The Stille Reaction

Vittorio Farina, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut Venkat Krishnamurthy, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut William J. Scott, Bayer Corp., West Haven, Connecticut

1. Introduction

Examples of the palladium-catalyzed coupling of organotin compounds with carbon electrophiles were first reported in 1977 by Kosugi, Shimizu, and Migita. (1-3) The first study by Stille appeared in 1978. (4) The early work of Beletskaya, using "ligandless" catalysts in cross-coupling reactions, also often employed organostannanes. (5) In recognition of Stille's comprehensive synthetic and mechanistic studies, this coupling is now referred to as the Stille reaction. (6) The Stille reaction is schematically defined in Eq. 1.

$$R^{1}Sn(R^{2})_{3} + R^{3}X \xrightarrow{Pd(0)L_{n}} R^{1}-R^{3} + (R^{2})_{3}SnX$$
 (1)

In Eq. 1, R¹ is typically an unsaturated moiety (e.g., vinyl, aryl, heteroaryl, alkynyl, allyl) or less often an alkyl group, and R², the nontransferable ligand, is almost always butyl or methyl. Electrophiles participating in the coupling include halides (almost always bromides or iodides) and sulfonates (most often used are the triflates). Other leaving groups have been used in special cases.

The Stille reaction belongs to the larger family of palladium- and nickel-catalyzed cross-coupling reactions which features, e.g., organomagnesium, (7) organozinc, (8) organoboron. (9) and organosilicon reagents. (10)

Organotin reagents are air- and moisture-stable organometallics, and can be conveniently purified and stored. Since they do not react with most common functional groups, the use of protecting groups is almost always unnecessary in conjunction with the Stille reaction. This is a very unusual and attractive feature for an organometallic process. Also, the reaction is often neither air nor moisture sensitive. In some cases, water and oxygen have actually been shown to promote the coupling. Although the reaction as initially described by Stille is often carried out under rather drastic conditions (temperatures of ³100° are not uncommon), newly developed ligands (11) and the addition of copper(I) salts (12) have solved some of the problems associated with low reactivity.

The utility and mildness of the Stille reaction are demonstrated by its frequent use in the final stages of complex natural product syntheses.

This review attempts a critical and comprehensive coverage of the reaction scope. Our mechanistic description of the reaction is rather brief, and we refer the reader to the pertinent literature for a more detailed analysis. All of the relevant literature is covered up to the end of 1994. The reaction was reviewed by Stille in 1986, (6) and by Mitchell in 1992; (13) a rather comprehensive account by Farina and Roth has appeared more recently. (14) Developments that occurred in 1995, as this work was in progress, and that were deemed important were incorporated as much as possible in this review.

2. Mechanistic Considerations, Regiochemistry, and

Stereochemistry

The three-step catalytic cycle proposed for the Stille reaction follows the general principles of transition metal-mediated cross-coupling reactions and is shown in Scheme 1. (6)

Scheme 1. Catalytic cycle of the Stille reaction.

When the catalyst is introduced as Pd(II), fast reduction by the stannane to a Pd(0) complex ensues, and the resulting Pd(0) species enters the cycle. Alternatively, the catalyst can be introduced directly as Pd(0). The rate or yield differences sometimes observed between Pd(II) and Pd(0) catalysts are not likely to be due to the initial difference in oxidation state, but rather to the stoichiometric ratio of palladium to ligand or other factors. (11)

The first step of the cycle is termed *oxidative addition* and is a quite general process for low-valent transition metal complexes. (15) The reaction is represented as a simple process in Scheme 1, but is likely to be a rather complex one. There is substantial evidence that a coordinatively unsaturated Pd(0) species, for example Pd(PPh₃)₂, is responsible for the oxidative process. (16) When the substrate is an aryl iodide, the reaction is accelerated by electron-withdrawing substituents on the ring ($\rho = +2$). (17) Oxidative additions are also accelerated by electron-rich phosphorus ligands on the palladium center. (18) In the coupling of aryl bromides with tetramethylstannane, the overall rate is strongly enhanced by electron-withdrawing groups on the aryl moiety ($\rho = +3.38$), suggesting that in this case the oxidative addition is rate limiting. (19)

At least with alkenyl halides, the oxidative addition may be a reversible process. Such a reaction generally proceeds with retention of olefin geometry. (20) Benzylic bromides undergo oxidative addition with partial or total racemization; (21) this has been explained by invoking a one-electron transfer process for this oxidative addition, (22) and CIDNP studies have supported the suggestion. (23) In these cases, the oxidative addition may be accelerated by the presence of oxygen in solution. (19) Intermediate **1** (Scheme 1) is generally formed as a *trans* square-planar complex, i.e., the two phosphine moieties are *trans* to each other, although the intermediacy of the less stable *cis* complex is assumed. (6)

In allylic systems, i.e., allylic chlorides, the oxidative addition was initially shown to proceed with complete inversion of configuration, through the intermediacy of η^{-3} -complexes, (24) but subsequent studies have revealed a more complex situation (Eq. 2). (25)

Specifically, it was shown that, in the absence of strong coordinating ligands, the stereochemistry depends on the solvent, nonpolar solvents favoring retention and polar ones leading to inversion. Furthermore, olefin ligands promote *syn* oxidative addition, and phosphines favor the *anti* pathway. (26)

Although it is known that the transmetallation is very often the rate-determining step of the Stille reaction, much less is known mechanistically about this metathesis reaction.

In early studies, Stille et al. showed that, in the coupling of benzylic stannanes with acid chlorides, electron-releasing substituents slightly increased the transmetallation rate ($\rho = +1.2$), suggesting that carbon-tin bond breaking precedes palladium-carbon bond formation. The stereochemical outcome with benzylic stannanes is predominantly inversion at the tin-bearing carbon, suggesting an "open" S_E2 mechanism. (27)

More recently, it has been shown that the transmetallation of 1 to 2 proceeds via prior ligand dissociation and that ligands with lower donicity toward Pd(II)

than PPh_3 [i.e., tri(2-furyl)phosphine and triphenylarsine] can lead to major (up to 1,000-fold) rate enhancements in the transmetallation. (11) With these ligands, many Stille couplings previously requiring vigorous conditions can be performed at room temperature.

In studies of the synthetically important coupling of organic triflates, (28, 29) LiCl is necessary to induce coupling of organic triflates in THF as solvent. This has been rationalized by postulating that the initial oxidative addition product (6, Scheme 2), which was isolated in one case, is catalytically incompetent, whereas ligand substitution with chloride ion leads to the reactive species 7. (28)

Scheme 2. Two possible pathways in the Stille coupling with organic triflates.

More recently, it has been found that addition of LiCl is often not necessary when operating in highly polar solvents like NMP, and in many cases LiCl is actually an inhibitor of the coupling. This was explained by invoking two pathways in the transmetallation, i.e., a faster one proceeding via cationic species 8 and a slower one (with L = PPh₃) proceeding via ligand dissociation (through 9). Hammett studies confirmed that there are two pathways with opposite electronic demands. Thus, in the absence of chloride the reaction is faster when the arylstannane contains electron-releasing groups (r = -0.89), whereas in the presence of LiCl, electron-withdrawing substituents also enhance the rate. The transmetallation is affected in a complex way by the combination of LiCl, ligands, and solvent, and the highest rates are obtained with AsPh₃ as ligand. With this superior ligand, the effect of halide additives on the rate of the transmetallation is minimal. (30)

Intramolecular couplings of triflates with stannanes do not require LiCl even in THF. (31) The recently reported ability of Ag(I) salts to improve some Stille couplings may also be explained by a switch of the transmetallation pathway via 8 and away from 9 (Scheme 2). (32)

The cocatalytic effect of Cu(I) in the Stille coupling was first reported by Liebeskind and Fengl. (12) Later studies have shown that Cu(I) performs a dual role: In ethereal solvents (THF, dioxane) and in conjunction with highly coordinating ligands (PPh₃), Cu(I) acts as a ligand scavenger to facilitate formation of the coordinatively unsaturated Pd(II) intermediate (9 in Scheme 2) needed to effect transmetallation, whereas in highly dipolar solvents (NMP) in the presence of "soft" ligands (AsPh₃) formation of an organocopper species is likely. (33) Thus, it seems simply that in the presence of inorganic Cu(I) salts, an organostannane may be in equilibrium with an organocopper species (Eq. 3). Another important role of Cu(I), enhancing the selectivity of group transfer in the Stille reaction, is discussed in a later section.

 $RSnBu_3 + CuI \xrightarrow{NMP} RCu + ISnBu_3$ (3)

Similar transmetallations have been postulated in order to explain the beneficial effect of stoichiometric Zn(II) salts on certain Stille couplings, but no experimental evidence is available. (28)

From the standpoint of the stereochemistry at Pd(II), the transmetallation usually proceeds with retention of configuration and is probably followed by *cis-trans* isomerization. The reductive elimination that follows probably proceeds through a T-shaped intermediate via prior ligand dissociation at Pd(II). (15) Pd(IV) species have been implicated as intermediates in the reductive elimination, (34) but factors that influence this step are not discussed further since reductive elimination is not rate determining in the Stille coupling. In the coupling of allylic electrophiles, however, reductive elimination will determine the regiochemistry of coupling, and in this case detailed understanding of this step is very important.

Allylic halides, typically chlorides, couple smoothly with organostannanes under normal conditions, and the regiochemistry of the coupling is usually the one resulting from attack of the organostannane at the less hindered terminus of the allylic moiety (Eqs. 4 and 5). (24)

When the organostannane is also allylic, the situation is more complicated. Apparently, the coupling is somewhat regiospecific, and the C-C bond is formed between the more substituted end of the allylic stannane and the less substituted one in the allylic halide. (35, 36) To explain the predominant allylic transposition of the stannane, both Stille and Trost postulated a direct attack of the stannane at the carbon terminus of an intermediate π -allyl complex, but there is no proof for such a mechanism. Indeed, indicator substrates for nucleophilic attack at π -allyl complexes classify allystannanes as reacting directly at Pd(II) and not at carbon. (37) This mechanistic issue is still unresolved, even though a simple stereochemical probe could resolve the issue. On the other hand, in the presence of maleic anhydride the coupling takes place in a preferred head-to-head mode, and the stereochemistry indicates attack of the stannane at the Pd center of the π -allyl complex, followed by reductive elimination with retention of configuration. (38, 39)

Exceptions to these regiochemical trends, however, can be found in the literature. One is shown in Eq. 6 and is mechanistically difficult to explain. One must also note that the two regiochemistries are interconvertible by Cope rearrangement. (40)

An important mechanistic issue that has recently begun to be addressed by several investigators concerns the effect of nucleophilic assistance at tin(IV) during the transmetallation. Two studies (41, 42) have independently shown that a nucleophilic moiety placed within the stannane considerably enhances transmetallation rates, whereas other studies in related systems have failed to detect such enhancements. (30) The increased reactivity of stannanes **10** has been explained by invoking internal N-Sn coordination in the transition state, (41) and a similar rationalization has been applied to the increased reactivity of systems such as **11**. (42)

These stannanes are able to effect transfers of alkyl moieties, which occur sometimes with difficulty or not at all using traditional Stille chemistry. The mechanistic and synthetic significance of these intriguing observations should be further explored.

3. Scope and Limitations: The Electrophile

In this section, the range of electrophiles used in the Stille coupling is surveyed. Details of experimental conditions and side reactions are more fully described in separate sections. The examples discussed are a select few. A complete survey is found in the tables. Limitations are discussed whenever carefully documented in the literature. Occasionally, low yields are reported in a number of isolated Stille couplings. These may be due to incomplete optimization of the reaction. Therefore, these examples are considered a real limitation only if the authors reported a thorough study exploring a comprehensive list of catalysts and conditions.

3.1. Alkenyl Halides

Alkenyl chlorides have been used very little in Stille couplings, presumably because of their lack of reactivity in the oxidative addition with Pd(0). Scattered examples of successful coupling exist, but appear limited to activated systems. (43, 44)

Alkenyl bromides and iodides are generally useful partners. Their coupling is often stereospecific. Since bromides undergo oxidative addition only at elevated temperatures, E/Z isomerizations are sometimes observed. More consistently stereospecific is the coupling with vinyl iodides, which takes place at room temperature or slightly above. The higher reactivity of the iodides vs. the bromides is nicely illustrated in Eq. 7, where under the mild conditions employed the bromide moiety is left unreacted. (45)

Two general studies on the cross-coupling between simple alkenyl iodides with both alkenyl (46) and alkynyl (47) stannanes are reported. Bromides also couple, but in lower yield. In each case, the preferred catalyst is the "ligandless' species $Pd(CH_3CN)_2Cl_2$. The reaction proceeds in DMF or THF at room temperature, and E/Z isomerization is negligible (Eq. 8).

The palladium-catalyzed reduction of vinyl iodides with tributyltin hydride or other hydride reagents can be loosely classified as a Stille coupling. The reaction is highly stereospecific, in contrast with the radical-induced reduction, which leads to geometrical isomerization. (48)

Very few limitations of this coupling reaction have been clearly documented. Even tetrasubstituted vinyl iodides couple in good yields. (49, 50) However, β -silyl vinyl bromide **12** couples with stannane **13** to yield only a completely isomerized product even under the mildest conditions. (51) This lack of stereospecificity is attributed to the bulky silyl group (Eq. 9).

Special classes of alkenyl halides that have been made the objects of specific studies include β -halo- α , β -unsaturated ketones and esters, which couple smoothly with a variety of stannanes, (52-54) quinone halides, which also couple well (preferentially using CuBr as cocatalyst), (55-58) and β -halo- α , β -unsaturated sulfoxides, which couple with alkenyl- (59) and alkynylstannanes (60) without *E/Z* isomerization and without epimerization at the chiral sulfur center.

Certain systems, on the other hand, appear difficult to couple and require carefully optimized conditions. For example, α -iodo- α , β -unsaturated ketones must be coupled using the "soft" ligand AsPh₃ and cocatalytic Cu(I). Even under these conditions, high temperatures are required, but the reaction is general and gives very good yields (Eq. 10). (61)

On the other hand, α -bromo- α , β -unsaturated ketones can be coupled with aryl stannanes using P(o-Tol)₃ as ligand in the absence of Cu(I) additives. (62)

Halocyclobutenediones couple with stannanes, and Cul cocatalyst is necessary to obtain good yields (Eq. 11). (63, 64)

Cyclooctatetraenyl bromide couples with stannanes at room temperature, and $P(2-furyl)_3$ or AsPh₃ are the ligands of choice. (65, 66)

Bromotropolones can be coupled with a variety of arylstannanes, to yield analogs of the antimitotic agent colchicine. (67)

Intramolecular versions of this coupling reaction yield a variety of ring sizes, from four (68) and five (69) to medium-size rings, (70-74) and even macrocycles. (75) Equation 12 illustrates the key step in the total synthesis of leinamycin. (76) The

mildness and generality of this method is demonstrated by its frequent application to the late stages of complex natural product syntheses. Thus, the alkenyl halide/organostannane coupling has been applied in recent years to the total syntheses of neooxazolomycin, (77) onnamide A, (78) 22,23-dihydroavermectin, (79) calyculin A, (80-82) lankacidin C, (83) lepicidin A, (84) and rapamycin. (85)

Probably the most spectacular application of this reaction is represented by the final step of Nicolaou's total synthesis of rapamycin, in which a tandem Stille coupling is carried out on the fully functionalized skeleton. (86) The yield is modest, but an intermediate iodostannane could be isolated and resubjected to the reaction conditions, affording more cyclized product and thereby increasing the overall yield to 46% (Eq. 13).

3.2. Aryl and Heterocyclic Halides

An early study reports that in the coupling of aryl halides with organostannanes, aryl bromides are the optimal electrophiles in the coupling reaction with allyltributylstannane. Aryl chlorides react only if strongly activated toward oxidative addition (e.g., *p*-nitrochlorobenzene), whereas aryl iodides couple only in low yields. (3)

In independent studies of the scope and utility of the reaction, it was found that both aryl bromides and iodides couple with a number of stannanes in high yield. (19, 87) The coupling of aryl bromides requires more vigorous conditions and is facilitated by electron-withdrawing substituents in the *para* position of the halide derivative, indicating that oxidative addition is the rate-determining step. A specific study deals with the preparation of styrene derivatives. (88) The method was applied to the synthesis of indole derivatives (Eq. 14). (89)

A synthetically useful variant of the Stille reaction is the coupling of aryl halides with aminostannanes. (90-92) The reaction so far is limited to aryl bromides. Secondary amines can generally be coupled, whereas among primary amines, only anilines have been reported to couple. The aminostannanes can be conveniently generated in situ from the corresponding amines and (diethylamino)tributylstannane. This is obviously a reaction with much potential, and it is likely that its scope will grow after further scrutiny. An example is shown in Eq. 15. (91) Other carbon-heteroatom bonds can be made through the intermediacy of organostannanes, as detailed later in the section describing the scope and limitation with respect to the types of stannanes that can be used.

Heteroaryl halides also couple with organostannanes. Although the scope of these reactions has generally not been studied in detail, many examples in the literature exist to support some generalizations. For example, 2-, 3-, or 4-bromopyridines couple well with aryl and heteroaryl stannanes, (93-95) whereas 3- iodopyridines couple in only fair yields. (96) 2-Chloro-3-fluoropyridine derivatives couple specifically at the 2 position with a variety of alkenyl stannanes. (97) Even 4-chloropyridine can be coupled. 3-Bromoquinolines also couple with stannanes. (93, 98) Equation 16 illustrates the key step in the synthesis of a lavendamycin analog. (99)

2- and 3-Furyl (100) and thienyl (96, 101–106) halides are easily coupled with stannanes. 2-Halothiazoles couple smoothly, as illustrated by a key step in a recent synthesis of micrococcinic acid (Eq. 17). (107) 2,5-Dibromothiazole couples first at the 2 position, then at C-5 (Eq. 18). (108)

Both 2- (109) and 3-indolyl (110) halides have been coupled with stannanes. Interestingly, 5-bromo-3-iodotosylindole couples specifically at C-3 (Eq. 19). (110)

2-Imidazolyl bromides couple with phenyltrimethylstannane, and 2,4-imidazolyl dibromides couple selectively at the 2 position with aryl stannanes, contrary to the corresponding arylboronates, which couple at both positions without selectivity. (111)

4(5)-Imidazolyl iodides, however, can be successfully coupled. (112, 113) 4-lodoisoxazoles can be coupled with a large number of stannanes. (114) 2,5-Dibromosiloles couple with alkynylstannanes, (115) and 2-bromo- and 2,4,6-tribromophosphinines couple with stannanes in an interesting selectivity pattern. (116)

Many applications of the Stille reaction to nucleoside chemistry have been made since the first application of the reaction to 2-iodopurines (Eq. 20). (117-120)

Similar chemistry has been reported for 5-iodouridines, (121-125) and 5-bromo- or 5-iodouracil (126-128) derivatives. 5-Arylcytosines have been prepared from the corresponding 5-iodo derivatives by Stille coupling. (129) Stannane coupling in purine chemistry has been extended to 8-bromoadenosines, (130) 8-iodoadenosines, (131) 6-iodouridines, (132) and 6-chloropurines. (133, 134) A number of 4- and 5-halopyrimidines (halo = Cl, Br, I) have been coupled with stannanes. (135-140) In polyhalogenated pyrimidines the order of reactivity in the coupling is C-4 > C-5 > C-2, regardless of the halide (Eq. 21). (141)

2-Chloropyrazines can be coupled with stannanes, (142) and even
bromo-substituted porphyrins have been subjected to the Stille coupling. (143, 144) Finally, aryl iodides attached to a polymer have been subjected to Stille couplings in relation to the building of combinatorial libraries. (145)

3.3. Acyl Chlorides

It was reported in 1977 that stannanes can be coupled with acyl chlorides under palladium (1) or rhodium catalysis. (2) Stille subsequently explored the scope of the reaction and showed that it is general for a wide variety of acyl chlorides (Eq. 22). (146)

$$R^{1}COCl + R^{2}SnBu_{3} \xrightarrow{BnPd(PPh_{3})_{2}Cl} R^{1}COR^{2}$$
(22)

R¹= Aryl, alkyl, alkenyl; R²= Alkyl, alkenyl, alkynyl, aryl

Few limitations are encountered in this reaction. AllyIstannanes may react further with the ketone products in a nonpalladium catalyzed nucleophilic carbonyl addition. Decarbonylation is seen in some cases, but can be avoided by running the reaction under a CO atmosphere. Product isomerization is a complication when allyl- and alkenylstannanes are employed. This reaction can be run under milder conditions (room temperature) by using tri(2-furyl)phosphine or AsPh₃ as ligands. (11) Use of the former often prevents the unwanted geometric isomerization. Oxalyl chloride is not a good substrate for this reaction. (147) Coupling with β -stannyl enones yields butene-1,4-diones, which are directly reduced to 1,4-diketones under the reaction conditions. (148)

The coupling of acyl chlorides and alkynylstannanes is quite general and affords good yields of α , β -acetylenic ketones. (149)

Examples of this reaction in the absence of palladium are well known, (150) and, although the uncatalyzed reaction is outside the scope of this chapter, in some cases it is claimed to be higher yielding than its palladium-promoted counterpart. (151) Acyl chlorides from dicarboxylic acids also participate in the coupling. If a distannane is used, an annulation reaction results (Eq. 23). (152)

Intramolecular couplings are also quite useful synthetically. (153, 154) An example is shown in Eq. 24. (155)

When the stannane used is tributyltin hydride, a general synthesis of aldehydes results. (156)

Chloroformates and carbamoyl chlorides also couple with stannanes (157) to yield esters and amides, respectively, in good yields (Eq. 25). (158) Intramolecular examples have been reported. (159)

3.4. Allylic, Benzylic, and Propargylic Electrophiles

The coupling of allylic electrophiles with organostannanes is a reaction of general utility. Stille studied the scope of the reaction of allylic chlorides and bromides with organostannanes. With allylic electrophiles, a regiochemical issue exists: Since these couplings probably proceed via η^3 -allylpalladium intermediates, coupling at either the α or the γ position is possible. Stille reports that coupling generally occurs at the less substituted terminus of the allyl moiety. An example is shown in Eq. 26. (24)

Aryl- and alkenylstannanes couple in good yields. Allylic stannanes react to yield mixtures in which coupling at the more substituted terminus of the stannane is favored. (36, 37) Among the applications to compounds of biological interest, the coupling of chloromethylcephems with stannanes constitutes a versatile approach to novel semisynthetic cephalosporins. (41)

Allylic acetates (36,160,161) and allylic phosphates (162) also couple with stannanes under special conditions. A study on the cross-coupling of allylic acetates showed that the reaction is quite general and is best carried out in the absence of phosphine but in the presence of LiCl. Again, coupling takes place at the less substituted allyl terminus, and both alkenyl- and arylstannanes couple in high yields. An example is given in Eq. 27. (163)

Alkenyl epoxides can be considered allylic electrophiles. They also undergo coupling with aryl- and alkenyl- (but not allyl-, benzyl-, alkyl-, and alkynyl-) stannanes to yield mixtures of 1,2 and 1,4 coupling products.

As with allylic acetates, the less substituted terminus is the more reactive. Added water increases the yield and the regioselectivity, but further work aimed at better control of the regiochemistry is necessary to make this reaction synthetically useful. Equation 28 shows a typical example. (164)

Propargylic acetates do not couple with organostannanes, (165) and alkynylstannanes may undergo anomalous coupling with allyl halides. (41) Allenyl acetates have been coupled with stannanes to yield polysubstituted 1,3-dienes (Eq. 29). (166)

Intramolecular examples of the coupling of organostannanes with allylic electrophiles have also been reported. Under optimized conditions, large rings can be constructed in fair yields (Eq. 30). (167)

Allyl esters and carbamates are important in the protection of carboxy and amine functional groups. Deprotection conditions sometimes involve use of Pd(0) catalysts in conjunction with tributyltin hydride. (168) Specific examples are not discussed, since they are outside the scope of this review.

Few studies on the coupling of benzyl halides with stannanes have appeared. Benzyl bromide itself couples with tetramethylstannane, vinyltributylstannane, and tetraphenylstannane in good yields under the catalysis of BnPd(PPh₃)₂Cl in HMPA. (19) Reaction with hexaalkyldistannanes yields benzylic stannanes in fair to good yields. (169) Propargyl halides have not generally been used as substrates in the Stille reaction. Propargyl bromide couples to some stannanes to yield allene derivatives. (170) The coupling of benzylic bromides containing β hydrogens takes place smoothly, without substantial β elimination, in the presence of the catalyst (2,2'-bipyridine) fumaronitrile palladium(0) (Eq. 31) (171). Further applications of

this interesting catalyst to other cross-coupling chemistry have not been reported. Finally, a nice application of this coupling to natural product synthesis is found in an approach to furanocembranolides (Eq. 32). (172)

3.5. Alkenyl Sulfonates and Other Electrophiles

The coupling of vinyl sulfonates is, in general, limited to triflates. In a few special cases where extra activation is present, mesylates (173) and tosylates (174) can be used, but these substrates have limited utility and are not discussed further. The coupling of vinyl triflates with organostannanes is a truly general reaction of paramount importance in organic synthesis, owing in part to the ready availability of isomerically pure alkenyl triflates. (175) An initial study shows that the coupling takes place in high yield in THF with alkenyl-, alkynyl-, and allylstannanes, but arylstannanes do not react. (28) The reaction requires addition of excess LiCl (Eq. 33).

The reaction of alkenyl triflates with hexamethyldistannane constitutes an important approach to alkenylstannanes (Eq. 34). (176)

A more recent study has shown that even arylstannanes couple smoothly under optimized conditions, using the "soft" ligand AsPh₃ and highly polar solvents such as NMP. (30) A careful reexamination of the LiCl effect has shown that this additive is often unnecessary for the reaction to proceed if one operates in NMP as solvent. LiCl is generally an inhibitor of the reaction in NMP when strong ligands (PPh₃) are used, but has little effect on the rate when "soft" ligands (AsPh₃) are employed. For a discussion of this complex behavior, the reader is referred to the mechanistic section. E/Z isomerization of the product can be a problem with these couplings (Eq. 35). (30) Use of Cul as a cocatalyst often reduces such isomerization. (177)

The intramolecular version of this reaction has been developed. The cyclization precursors were assembled using an array of tin-containing bifunctional synthons developed for this purpose. A variety of small- and medium-size rings was assembled, and applications to the total synthesis of terpenoids were reported. (31,69,178–183) Once again, LiCl behaved as an inhibitor of the coupling. An example of this powerful methodology is shown in Eq. 36. (184) An extension to macrocyclizations is reported. (185, 186)

Alkenyl phenyliodonium salts also couple with alkenylstannanes under mild conditions, as shown in Eq. 37. (187, 188)

3.6. Aryl and Heterocyclic Sulfonates and Other Derivatives

The Stille coupling of aryl triflates has been extensively studied. In the presence of LiCl, these substrates couple with alkyl-, alkenyl-, allyl-, alkynyl-, and arylstannanes in high yields under relatively harsh conditions (ca. 100°). Dioxane and DMF are the solvents of choice. Equation 38 shows a typical example. (189)

Aryl triflates are less reactive than aryl iodides, but their reactivity is comparable to that of aryl bromides. A direct competition experiment showed that product distribution depends strongly on the coordinative level of the catalyst used (Eq. 39). Unfortunately, no firm conclusions can be drawn about the mechanistic

basis for this dichotomy, since the two catalysts were used in different solvents, and it is likely that the solvent is also a key factor in the ease of oxidative addition. (30) Ether, nitro, amido, and carbonyl groups (even aldehydes) are tolerated on the aryl triflate. Because of the harsh conditions employed, double bond migrations and isomerizations are recurring problems. As for vinyl triflates, a reexamination of the reaction showed that the coupling of aryl triflates is best carried out in NMP with AsPh₃ as ligand. In this solvent, LiCl reduces the coupling rate, but is sometimes beneficial to catalyst stability. An *ortho* methyl group on the aryl triflate slows the coupling by a factor of 3. (30)

Separate studies have shown that electron-rich aryl triflates also couple in good yields, especially with Cu(I) cocatalysts. (190, 191) Both 1- and 2-naphthyl triflates couple as expected, (192) as do indolyl, (193) quinolyl, and isoquinolyl triflates. (194, 195) Pyrimidyl triflates couple with organostannanes in good yields. (196) Among the derivatives of medicinal interest as targets, one must note the utility of the coupling of cephem, (40) carbacephem, (197) and carbapenem (198) triflates with stannanes for the synthesis of antibacterial β -lactams, the coupling of uridine triflates with stannanes, (199) and an application to the synthesis of anthramycin (Eq. 40). (200)

In addition to triflates, other sulfonates can be used, including long-chain polyfluorinated sulfonates, (29, 201) *p*-fluorophenyl sulfonates, (202) and fluorosulfonates. (203) The last appears to be of practical utility, considering the low cost of fluorosulfonic acid vs. the expense of triflic acid (Eq. 41).

Among the aryl electrophiles, diazonium salts participate in the Stille coupling

with alkenyl-, alkyl-, and arylstannanes, and an example is shown in Eq. 42. (204) Given their ready availability, the under-utilization of these substrates is hard to understand.

Even some ether derivatives, notably some *pseudo*-saccharyl *O*-ethers, couple with stannanes in low to fair yield, especially under Ni(0) catalysis, but this reaction is restricted to tetramethylstannane so far, and therefore its scope is still to be fully explored. (205) Diaryliodonium salts also participate in the Stille reaction. (206)

3.7. Miscellaneous Electrophiles

Alkyl halides do not normally cross-couple with organostannanes, but some α -activated substrates do undergo the Stille coupling. Among them, the α -halo ethers and α -halo thioethers couple smoothly, even if β hydrogens are present (Eq. 43), (207) whereas α -halolactones couple with allylic and acetonyl stannanes. (208)

 α -Halocarbonyl compounds react with allyl and acetonyl stannanes in an anomalous fashion, i.e., by attack at the carbonyl followed by oxirane formation (Eq. 44). (209)

Perfluorinated alkyl iodides, in which β -hydride elimination after oxidative addition is impossible, couple with stannanes in good yields, although the reaction is proposed to be radical mediated. (210) Imidoyl chlorides couple with stannanes in low to fair yields, thus providing a route to imines from

amides. An example is shown in Eq. 45. (211) Alkynylstannanes react in particularly good yields. (212)

Although no general study has appeared on the use of alkynyl halides in the Stille reaction, sporadic but useful applications of these electrophiles have been recorded. (213-215) A remarkable result is reported in a dynemicin total synthesis (Eq. 46). (216)

Many examples of arene or polyene metallocarbonyls in the Stille cross-coupling have been reported. (217-226) The purpose of the metallocarbonyl moiety is often to activate the aryl electrophile toward oxidative addition, as in Eq. 47. (227)

Several heteroatom-halogen bonds can be activated toward coupling by Pd(0) catalysts, including P-CI, (228) S-CI, (229) and Fe-I bonds. (230) The last appears to be the first example of the formation of a transition metal-carbon bond under the catalysis of a Pd(0) complex. An example is shown in Eq. 48. (231)

Bifunctional electrophiles and stannanes, when coupled, usually give rise to polymeric materials. Many examples of this strategy have been reported, as is evident from Table XXXI. A typical example is shown in Eq. 49. (232)

4. Scope and Limitations: The Stannane

Unfortunately, most studies on the Stille reaction emphasize a specific type of electrophile, and very few studies examine a particular class of stannanes. General studies of stannane reactivity are therefore lacking. It is impossible to discuss all examples in which a particular type of stannane has been used. In this section we attempt to focus on a limited number of more general papers in an effort to delineate the current scope and limitations in the use of stannanes for the Stille reaction.

4.1. Alkylstannanes

It is generally accepted that transfer of alkyl groups from tin is much slower than that of unsaturated substituents. (6) Indeed, it is this property that makes the methyl and especially the butyl group such excellent "dummy," i.e., "nontransferable," ligands. Nevertheless, in many cases coupling of tetraalkylstannanes occurs in high yields at elevated temperatures. Among the tetraalkylstannanes, tetramethylstannane and tetrabutylstannane are most often used, the former being more reactive. The coupling of these stannanes with aryl and benzyl halides is carried out in HMPA and proceeds in good yields. (19) Use of triphenylarsine as ligand facilitates the coupling of these sluggish nucleophiles with aryl triflates. (30)

One of the problems associated with the coupling of symmetrical tetraalkylstannanes is that only the first alkyl group is transferred at a sufficient rate to be of synthetic utility, (6) successive transfer becoming more and more difficult with increasing halogen substitution at tin. The need therefore arises for the use of "dummy" ligands; selectivity in the transfer of alkyl groups, however, is quite poor. In special cases, when the alkyl group is activated by particular substituents, some selectivity may be observed. Thus, benzyl trialkylstannanes selectively transfer the benzyl group (27) with inversion of configuration at carbon. The reaction is facilitated by electron-withdrawing substituents on the aryl ring of the stannane.

Other activated stannanes have been coupled successfully, including transfer of hydroxymethyl, (233) methoxymethyl, (234) and cyanomethyl (235) groups onto a number of aryl bromides (Eqs. 50 and 51).

The successful coupling of ethyl α -(tributylstannyl)acetate is reported; the addition of Zn(II) salts is needed for optimum results (Eq. 52). (236) Unfortunately, in none of these studies was a quantitative assessment carried out regarding the transfer selectivity of the activated alkyl vs. the "dummy" butyl group.

$$Br = \frac{Bu_3SnCH_2CO_2Et, Pd[P(o-Tol_3)]_2Cl_2}{ZnBr_2, DMF, 80^{\circ}} O2Et (93\%) (52)$$

Acetonylation is also possible using acetonyltributylstannane, (237) but in general these α -stannyl ketones are unstable, and their coupling is best carried out by generating them in situ from enol acetates (238-240) or enol silanes. (241) This reaction amounts to a net α -arylation (or alkenylation) of enolates, a rather difficult operation. The above methodology, however, is limited: Only methylene enolates are arylated in good yields, whereas more substituted derivatives couple poorly (Eqs. 53 (240) and 54 (241)). Further synthetic studies in this important area are warranted.

Cyclopropyltributylstannane transfers the cyclopropyl group in low yield. (126) The coupling of α -amino- and α -alkoxystannanes (242) with acyl chlorides takes place in good yields and with retention of configuration at the *sp*³ carbon of the stannane, provided Cu(I) salts are added as cocatalysts (Eq. 55). (243) The intermediacy of an organocopper species has been implicated. 4-(Tributylstannyl)-2-azetidinones also couple with acid chlorides. (244)

An important advance in the selective transfer of alkyl groups from tin has been reported. (41) Using alkylstannanes 10, selective transfer of alkyl groups, including *sec*-butyl and α -trimethylsilylmethyl, is achieved under rather mild conditions. Further research is needed to expand the synthetic utility of systems containing a substituent capable of triggering pentacoordination at tin.

4.2. Alkenylstannanes

The coupling of alkenylstannanes with a variety of electrophiles is a quite general reaction, and it is difficult to find specific limitations in the literature. Some failures, however, have been reported. Most studies on the cross-coupling of alkenylstannanes are limited to readily accessible 1,2-disubstituted substrates. These couple efficiently and often with good stereospecificity. (47) More heavily substituted or more complex stannanes couple sometimes with difficulty or not at all. In particular, alkenylstannanes that bear another substituent α to tin appear difficult to couple. For example, stannane 14 does not couple with internal alkenyl iodide 15, but couples normally with its terminal isomer 16. (244a) This difference is most likely due to steric hindrance.

Methyl α -(tributylstannyl)acrylates couple abnormally with iodobenzene, owing to their tendency to yield cine-substitution products (vide infra). (245) Normal *ipso* reactivity is restored by the addition of Cu(I) salts. (246) β -Substituted α -(tributylstannyl)acrylates, however, couple normally with both acyl chlorides (247) and allylic halides (Eq. 56). (248) Evidently, the β substitution dramatically slows the cine-substitution process.

 α -Styrylstannanes yield cine substitution when coupled with aryldiazonium compounds (vide infra), (249) but can be coupled with acyl chlorides without side reactions. (250) Again, β substitution restores normal Stille reactivity, although in poor yield. (251) In general, densely substituted stannanes react poorly, and their coupling must be carefully optimized. An example from the total synthesis of lacrimin A is shown in Eq. 57. (252)

Examples where every attempt to induce coupling fails include stannanes **17** (253) and **18**. (51) Other stannanes with seemingly comparable steric hindrance, however,

couple under standard conditions. For example, α -trialkylsilyl substitution in alkenyltrimethylstannanes prevents Stille coupling with allyl halides because the methyl groups on tin transfer more rapidly. (254) However,

1-triethylsilyl-2-trialkylstannyl-1-alkenes similar to **18** can be coupled with acyl halides (Eq. 58). (255)

 α -Phenyl and α -methyl substitution of olefinic stannanes does not seem to hinder Stille coupling in some cases (Eqs. 59 (49) and 60 (256)). The latter coupling, however, is successful only in the presence of cocatalytic copper. This may represent a general solution to the problem of coupling hindered alkenylstannanes.

Another example of this trend is shown by the difficult coupling of cyclohexenylstannanes with aryl triflates. Butyl transfer is an important side reaction here, unless one employs cocatalytic copper (Eq. 61). (33)

In general, 1-tributylstannylcycloalkenes couple very sluggishly under Stille conditions, (257, 258) and the reason must be attributed to some type of steric hindrance. β -Stannyl enones, (259) β -sulfonyl alkenylstannanes, (260) and 3- (or 4-) tributylstannyl-2-(5*H*)-furanones (261) have been made the objects of special investigations. In each case coupling with electrophiles is successful. Other types of alkenylstannanes that have been separately investigated include a variety of fluorinated alkenyl stannanes, (262-266) cyclobutenone, (267) and cyclobutenedione (12, 64, 268) stannanes.

 α -Alkoxy-substituted alkenylstannanes seem to be especially reactive partners in the Stille reaction. (269-271) β -Alkoxyalkenylstannanes have also been coupled successfully. (272-274) Polyunsaturated alkenylstannanes have been studied in a few sporadic cases. Thus, allenylstannanes couple with aryl iodides (275) and triflates in modest yields (Eq. 62). (276) With allylic electrophiles, these stannanes

yield propargylic derivatives, the result of allylic inversion. (165) A variety of dienyl- (277) and ynenyl- (278) stannanes have also been coupled with a number of electrophiles. 1,1-Distannylalkenes have been coupled with allylic halides, double substitution being the result. (254) With

1,2-bis(stannyl)ethylenes, on the other hand, monocoupling can be controlled to produce substituted alkenylstannanes. A large excess of the bis(stannane) is not necessary, because the first cross-coupling is faster than the second one. The second coupling can be carried out under more forcing conditions (Eqs. 13 and 63 (279)).

4.3. Aryl and Heterocyclic Stannanes

Arylstannanes couple readily with a variety of electrophiles. Both electron-withdrawing and electron-releasing substituents on the aryl ring can accelerate coupling, an indication of a dual mechanism for the transmetallation (see mechanistic section). (30) In general, however, electronic effects in the transmetallation are minor. On the other hand, steric effects can be important. An alkyl group *ortho* to the tin residue can slow the coupling by a factor of ca. 20. An *ortho* methoxy group, which is sterically much smaller, leads to only a 2-fold rate reduction. (30) In general, therefore, coupling with *ortho*-substituted arylstannanes can be difficult, and substantial transfer of the dummy ligand can take place (see section on side reactions). This problem has been tackled successfully by using Cu(I) salts. Under these conditions aryl group transfer is exclusive. (30, 280)

Aryl trichlorostannanes have been used as coupling partners in aqueous media employing vigorous conditions, (281) under which the tin-chlorine bond is probably hydrolyzed to a tin-hydroxy species, because coupling does not take place in organic media (Eq. 64). (282) This protocol obviates the use of organic solvents, but

appears limited to water-soluble electrophiles. In a similar vein, tetrabutylammonium difluorotriphenylstannate can be used to transfer a phenyl group onto vinyl triflates. (283)

Pyridyl-, quinolyl-, and isoquinolylstannanes have been the objects of separate studies. They couple smoothly with acyl chlorides. (284, 285) Electron-rich heterocyclic stannanes, such as the 2-furyl-, 2-thienyl-, 2-pyrrolyl-, and

2-thiazolylstannanes, couple with aryl halides under rather mild conditions. An example is shown in Eq. 65. (286)

3,4-Distannylfurans have been studied in great detail as bifunctional reagents, (287) and 3-stannylfurans have been used as substrates with acyl chlorides. (288) 2-Stannyl- (289, 290) and 3-stannylindoles (291) have also been coupled with a variety of electrophiles. 5-Isoxazolylstannanes have been coupled with aryl iodides. (292, 293)

2-Tributylstannylfuran couples with a number of α -chlorocyclobutenones in low yields, and it is postulated that this is due to further attack of the electrophile on the 5 position of the heterocycle, which is very electron-rich. These electrophilic palladations of electron-rich heteroaromatics are indeed precedented. (294) However, 5-trimethylsilyl-substituted stannylfurans couple in excellent yields. (295)

Equation 66 shows the application of the Stille reaction to the synthesis of 5-substituted furanones. (296)

Couplings of nonaromatic, heterocyclic stannanes are often found in the literature. A popular target has been α -substituted glycals. (297-300) One example is shown in Eq. 67. (301)

4.4. Alkynylstannanes

Alkynylstannanes couple smoothly with a variety of electrophiles, including alkenyl halides. (47) This class of stannanes is the most reactive of all, according to Stille, (6) and few limitations exist. Alkoxy-substituted alkynylstannanes have been used in an interesting approach to α -aryl and heteroaryl acetates (Eq. 68). (302)

In general, although these stannanes are quite reactive, their use in cross-coupling chemistry is often unnecessary, since terminal alkynes couple directly with organic electrophiles using a palladium catalyst, cocatalytic copper, and amines as bases (Sonogashira coupling). (303)

4.5. AllyIstannanes

Allylstannanes have been underutilized in the Stille coupling, presumably because of the difficulties with the synthesis of regiochemically defined substrates and their tendency to undergo allylic isomerization, thus making it hard to predict the regiochemistry of the coupling. Simple allylic stannanes couple more slowly than alkenylstannanes, (6) but at acceptable rates in most cases. One problem that has been documented with allylstannanes is the tendency of the double bond to move into conjugation after coupling, especially in reactions with acyl halides (146) and aryl triflates. (189) This can sometimes be prevented by operating at lower temperatures using tri(2-furyl)phosphine as the palladium ligand (Eq. 69). (11)

 γ position, and not enough data are presented in the literature to draw firm conclusions. (2) Thus, crotyltrimethylstannane couples with acyl chlorides to yield a 1:1 mixture of α and γ products, but the product resulting from γ attack predominates at lower temperatures. (146)

Terpenic allylstannanes undergo regioselective Rh-catalyzed acylation at the α or γ position, depending on the structure of the substrate (Eqs. 70 and 71). (150, 304)

A few special classes of allylstannanes have been described as substrates for

the Stille reaction. An interesting one is shown in Eq. 72. (305) Thus, α -alkoxyallylstannanes

couple with acyl chlorides to yield the allylically inverted β , γ -unsaturated ketones, which can be further converted to 1,4-dicarbonyl compounds by acid hydrolysis.

On the other hand, γ -carbalkoxy-substituted allylstannanes undergo selective coupling at the α position with alkenyl, aryl, and acyl halides (Eq. 73), but only at

the γ position with allylic electrophiles. (306) This confirms early results, in which allylstannanes were coupled with allylic electrophiles with predominant allylic inversion. (35, 36) Further aspects of this reaction are discussed in the mechanistic section.

The use of an allylic bis(stannane) as an annulation reagent has already been discussed (Eq. 23).

In conclusion, although allylstannanes are useful partners in the Stille reaction, they have been used infrequently, probably because the regiochemistry of the coupling is still unpredictable. This area certainly deserves further in-depth research.

4.6. Other Stannanes

Acylstannanes have been coupled in a few cases with acyl chlorides to provide unsymmetrical α -diketones (Eq. 74). (307) A CO atmosphere may help to prevent decarbonylation.

Distannane derivatives are useful reagents in conjunction with a variety of electrophiles. Upon reaction with acyl halides, they yield mixtures of symmetrical ketones and α -diketones. Diketones predominate under a CO atmosphere. (308) Under suitable conditions, the reaction stops at the acylstannane stage, and this is preparatively useful (Eq. 75). (309)

$$\begin{array}{c} O \\ Ph \\ \hline Cl \end{array} \qquad \begin{array}{c} BnPd(PPh_3)_2Cl, Me_3SnSnMe_3 \\ \hline THF, reflux \end{array} \qquad \begin{array}{c} O \\ Ph \\ \hline SnMe_3 \end{array} (80\%) \tag{75}$$

The couplings of hexamethyl- and hexabutyldistannanes with aryl bromides and iodides, and also with benzylic bromides, are high yielding, homocoupling of the electrophile being the only detectable side reaction (Eq. 76). Most substituents on the aryl ring are tolerated except *p*-amino and *p*-nitro. Under these conditions, allyl and alkenyl halides give the corresponding stannanes in low yields. (169)

$$MeO \xrightarrow{I} Pd(PPh_3)_2Br_2, Me_3SnSnMe_3 \\ toluene, 115^{\circ} MeO \xrightarrow{SnMe_3} (96\%) (76)$$

The coupling of distannanes with aryl halides has been studied independently, (310, 311) and another investigator found that some of the above limitations can be overcome by using "ligandless" conditions. (312, 313) A problem with this protocol is, however, disproportionation of the distannane, and an excess of the reagent must be used. A typical example of this protocol as it applies to allylic acetates, bromides, and chlorides is shown in Eq. 77. (314) Nickel catalysis has also been used in this reaction. (315)

The reaction of distannanes with vinyl triflates is an important route to regiochemically and geometrically defined vinylstannanes, as previously shown (Eq. 34). (176) Even some activated vinylic chlorides couple with hexamethyldistannane. (260)

Aminostannanes react with electrophiles, such as aryl and alkenyl bromides, in variable yields (Eq. 78). (90, 316) This process was recently reinvestigated and improved, (91, 92) as already illustrated (Eq. 15).

Ph $Br = \frac{Bu_3SnNEt_2, xylene}{Pd[P(o-Tol)_3]_2Cl_2, 100-120^\circ}$ Ph NEt_2 (50%) (78)

The formation of C-S bonds via organotin sulfides is also well precedented. Alkenyl, (317) aryl, (318) and heteroaryl halides (319) participate. An example is shown in Eq. 79. (320)

Among related reactions that have received only scant attention, (trimethylstannyl)diphenylphosphine couples with iodoaromatics to provide substituted triarylphosphines, (321) and tin alkoxides have been coupled with allylic electrophiles. (322) These methods have not been further applied to organic synthesis.

5. Carbonylative Couplings

When a Stille coupling is carried out under a CO atmosphere, carbonyl incorporation under catalytic conditions is possible. The reaction is general for alkenyl, aryl, heteroaryl, and allyl electrophiles (Eq. 80).

 $R^{1}-X + CO + R^{2}SnR^{3}_{3} \xrightarrow{[Pd(0)]} R^{1}(CO)R^{2} + R^{3}_{3}SnX$ (80)

The earliest report of a successful carbonylative coupling between a stannane and an organic halide showed that several simple aryl, alkenyl, and benzyl halides could be coupled with simple stannanes under rather vigorous conditions (Eq. 81). (323) A considerable body of research has been reported as this procedure has been refined and its scope defined.

$$R^{1}-X + CO + R^{2}_{4}Sn \xrightarrow{PhPd(PPh_{3})_{2}I} R^{1}COR^{2}$$

$$450 \text{ psi CO, } 120^{\circ}$$

$$HMPA \qquad (81)$$

R¹ = Ph, PhCH₂, PhCH=CH, EtO₂CCH₂; R² = Me, Bu, Ph; X = Cl, Br, I

5.1. Alkenyl Halides

The palladium-catalyzed carbonylative coupling of alkenyl iodides with alkenylstannanes affords the corresponding dialkenyl ketones in good yield (Eq. 82). (324) The reaction takes place under neutral, mild conditions (40–50°,

$$R^{2} \xrightarrow{R^{1}}_{R^{3}} I + R^{4}SnBu_{3} \xrightarrow{Pd(PPh_{3})_{2}Cl_{2}, THF}_{15-45 \text{ psi CO}, 50^{\circ}} \qquad R^{2} \xrightarrow{R^{1}}_{R^{3}} R^{4}$$

$$R^{4} = alkenyl$$
(82)

THF) and low CO pressure (1–3 atm). One may assume that all of the functional groups compatible with the standard, noncarbonylative cross-coupling reactions are also compatible with the carbonylative conditions, although no comprehensive study has been reported.

The outcome of the reaction can be sensitive to CO pressure, and slightly elevated pressures (45 psi) typically eliminate the competing direct coupling. An example can been seen in Eq. 83. β -lodostyrene requires 45 psi CO for exclusive

Ph
$$I + Ph$$
 $SnBu_3 \xrightarrow{Pd(PPh_3)_2Cl_2, THF, rt} Ph \xrightarrow{O} Ph$ (83)

carbonylative coupling, because under 15 psi CO a 1:1 mixture of direct and carbonylative coupling products is formed. (324) Double bond isomerization can be a problem. Alkenes with Z geometry have a propensity to isomerize, especially under harsh reaction conditions.

Alkenyl iodides can also be transformed into the corresponding α , β -unsaturated aldehydes through carbonylative cross-coupling using tributyltin hydride as a partner. As with ketone formation, partial *Z/E* isomerization is a problem (Eq. 84). (325)

n-Bu I + Bu₃SnH
$$\xrightarrow{Pd(PPh_3)_4, THF}$$
 n-Bu CHO (84)
Z:E = 85:15

5.2. Aryl and Heterocyclic Halides

Aryl iodides and bromides, but not chlorides, can be carbonylatively coupled with organostannanes to furnish ketones. The number of examples in the literature for aryl iodides and bromides is limited, and although bromides couple, the yields are low. The moderate interest in aryl halides is due to the extensive versatility of aryl triflates in this coupling strategy. The protocol using "ligandless" conditions is illustrated in Eq. 85. (326, 327)

$$R^{1} \stackrel{\text{II}}{\square} \qquad X + Me_{3}SnR^{2} \qquad \underbrace{[(\eta^{3} - C_{3}H_{5})PdCl]_{2}}_{45 \text{ psi CO, HMPA, } 20^{\circ}} \qquad R^{1} \stackrel{\text{II}}{\square} \qquad R^{2} \qquad (85)$$

X=I, Br

A recent example, which uses more vigorous conditions but employs a nonpolar solvent, is shown in the coupling of aryl and heteroaryl iodides with cyclobutenedionestannanes (Eq. 86). (268)

The role of additives, as well as potential ligand effects, has not been experimentally determined for the carbonylation reaction. There is a report on the beneficial effect of $AsPh_3$ in the context of a key step in a total synthesis of strychnine (Eq. 87). (328)

A variety of heterostannanes (R_3 Sn-OR',-SR',-NR'_2) can also be used as nucleophilic partners in the carbonylative Stille reaction (Eq. 88). (329, 330) Esters and

amides are formed under mild conditions using HMPA as solvent. Electron-withdrawing groups on the aromatic ring appear to slow down CO insertion, and when such functional groups are present, there is competing direct coupling between the aryl moiety and the heterostannane.

The formylation of aryl iodides appears to be a general process. Aryl bromides furnish the desired aldehydes in moderate to low yield. A competing side reaction is direct reduction of the halide. Aryl iodides containing electron-releasing groups are formylated under 15 psi CO, whereas those containing electron-withdrawing groups need at least 45 psi CO to minimize reduction. Slow addition of tributyltin hydride to the reaction mixture under CO pressure is necessary in order to optimize the ratio of aldehyde to reduced product. A single example using 3-iodofuran demonstrates that heterocycles can also be formylated in this manner (Eq. 89). (325, 331)

$$I + Bu_3SnH \xrightarrow{Pd(PPh_3)_4, THF} O (60\%) (89)$$

Ortho substituents adversely affect the yield, and those containing a heteroatom also present a unique problem: the potential for competitive alkoxycarbonylation or amidation (Eq. 90). (332)

5.3. Allylic and Benzylic Halides

Allyl and benzyl chlorides insert CO when reacted with stannanes, forming the corresponding ketones. (24) Diallylic ketones have been prepared under very mild conditions. (333) Higher pressures of CO favor ketone formation over direct coupling. The major side reaction is the carbonylative homocoupling of the organostannane. Carbonylative couplings occur with inversion of stereochemistry at the halide-bearing carbon, at least under the conditions specified in Eq. 91. (24)

Allyl and benzyl chlorides are also formylated readily. Double bond migration to the α , β -unsaturated aldehyde is a common problem with allylic chlorides, as is competing reduction. (331)

5.4. Alkenyl Sulfonates

Alkenyl triflates are popular substrates for carbonylative coupling, which leads to α , β -unsaturated ketones and aldehydes. Many coupling examples can be found in the literature, and the scope of the reaction is broad. This strategy has been used in the total synthesis of natural products such as \triangle $^{9(12)}$ -capnellene (Eq. 92) (334) and jatrophone. (335)

Aryl-, alkynyl-, and alkenylstannanes all couple well, but double bond migration is a problem with allylstannanes. It has been reported that lithium chloride is a required additive for successful reaction. In several examples, the addition of zinc chloride improves the yields. (335) Macrocycles can be effectively prepared through intramolecular carbonylative ketone formation using a polymer-supported palladium catalyst. (186)

5.5. Aryl and Heterocyclic Sulfonates

The palladium-catalyzed carbonylative coupling of aryl triflates to give aryl ketones takes place under mild conditions. (336) Alkenyl-, alkynyl-, and arylstannanes all work well as coupling partners, but the presence of electron-withdrawing groups (e.g., NO_2) in these stannanes adversely affects the reaction because the aryl triflate is cleaved at the oxygen-sulfur bond. Allylstannanes are ineffective, resulting in high proportions of directly coupled products. As with alkenyl triflates, the presence of lithium chloride is required, but here the catalyst dichloro[1,1¢-bis(diphenylphosphino)ferrocene]palladium gives superior yields (Eq. 93). If a competitive coupling site such as bromide is present on the

aryl triflate, carbonylative cross-coupling takes place selectively at the triflate moiety even in the absence of lithium chloride (Eq. 94).

5.6. Miscellaneous Substrates

Some activated organic halides containing β hydrogens can be carbonylatively cross-coupled under high CO pressures, and the ligand of choice for this reaction is triphenylarsine (Eq. 95). (337) The reported scope of this reaction is limited to the

use of α -phenethyl bromide, ethyl α -bromopropionate, and α -phenylpropyl bromide as substrates for the formation of methyl ketones, and the major side product is the result of elimination to the corresponding alkene. In a single example tetraphenylstannane has also been coupled. (323)

An interesting example of carbonylation has been applied to the synthesis of (+)-negamycin and (–)-5-*epi*-negamycin (Eq. 96). (338) The intermediate from the

palladium-assisted alkylation of an optically active enecarbamate is effectively carbonylated in the presence of an alkenylstannane to furnish the desired optically active ketone. Although this transformation requires a stoichiometric amount of palladium, it appears to be quite general and works well with a variety of alkenyl, aryl, and heteroarylstannanes. (339)

Aryl diazonium salts are also effective substrates for ketone formation (Eq. 97). (340) Diaryl and arylalkyl ketones can be prepared under very mild conditions. The presence of electron-withdrawing and electron-releasing groups on the ring is tolerated, and products from direct coupling are not observed.

6. Complex Synthetic Sequences Involving

Tin-to-Palladium(II) Metathesis Steps

A strategy that is receiving considerable attention in palladium chemistry is the tandem Heck-Stille sequence. Under suitable conditions, the organopalladium(II) intermediate resulting from a Heck insertion can be trapped by an organostannane, resulting in the formation of two C-C bonds at once. This strategy works best when the Heck adduct cannot undergo palladium hydride β elimination. The norbornyl system is used often in this sequence because the initially formed adduct **21** (Scheme 3) has no easily accessible *syn* β hydrogens, which are needed for a stereocontrolled elimination, and it is stable enough to be intercepted by the stannane to yield **22**.

Scheme 3. The Tandem Heck/Stille Strategy.

This strategy can be used in conjunction with $Pd(PPh_3)_4$ as catalyst, alkenyl or aryl bromides as electrophiles, and alkenyl-, alkynyl-, aryl- or allylstannanes as traps. The yields are low to fair, and direct coupling is the major side process. (341) Allyl, benzyl, and acyl halides do not participate in this reaction. Among the stannanes that do not participate are the activated alkylstannanes, aminostannanes, alkoxystannanes, and thioalkoxystannanes. (342) For the analogous reaction with norbornadiene as substrate, the best ligand is (*o*-tolyl)diphenylphosphine. The additive tetraethylammonium chloride is needed for best results. (343)

More generally useful is the analogous sequence in which the initial Heck insertion is intramolecular. An elegant application to the synthesis of benzoprostacyclins is shown in Eq. 98. (344)

This method can be extended to situations in which the initially formed organopalladium(II) intermediate is, in principle, capable of undergoing ready β -hydride elimination. Nevertheless, fine-tuning of the process with the help of tri(2-furyl)phosphine to accelerate the metathesis, in conjunction with zinc chloride, affords the Heck-Stille coupling product in high yield. The generality of these observations remains to be verified (Eq. 99). (345)

When C-C triple bonds are used as intramolecular traps in this strategy, competing β elimination is not possible, and the tandem process is often successful, the only competition originating from the direct coupling (intermolecular) process. The initial 5-*exo* and 6-*exo* cyclizations are faster than direct coupling, and the tandem process succeeds, even though Al, Zr,

and Zn derivatives often yield better results. (346-350) An application of this strategy to a neocarzinostatin synthesis is shown in Eq. 100. (351-353)

Similar applications to the synthesis of vitamin D are reported. (354) Carbon monoxide insertion can be included in this sequence. An example of this interesting intramolecular Heck-CO insertion-transmetallation strategy is shown in Eq. 101. (355)

In special cases, even the intermolecular insertion of alkynes can be carried out. When the electrophile is an allylic halide, apparently the direct coupling with stannanes is slow enough that the alkyne is first to react with the intermediate allylpalladium complex. Aryl-, alkenyl-, and alkynylstannanes can be used as traps. The yields, however, are quite modest (10–53%). An example is shown in Eq. 102. (356) A Ni(0)-catalyzed version of this reaction proceeds in higher yields, at least with alkynylstannanes as traps. (357)

An interesting variant of the tandem Heck-Stille protocol is the reverse strategy. A bis(electrophile) can undergo monocoupling with an alkenylstannane, and this is followed by a fast intramolecular Heck reaction (Eq. 103). (358) This interesting

strategy deserves further investigation. There are a number of interesting strategies for the construction of aromatic rings based on the ring opening of complex cyclobutenones, which on thermolysis rearrange to arenes via dienylketenes, as exemplified in Eq. 104. (359) Both alkenyl- and arylstannanes can be

used in this coupling, leading to benzene and naphthalene derivatives, respectively, after electrocyclic ring opening/reclosure.

Variants of this technique are the synthesis of benzofurans and benzothiophenes, (295) an approach to naphthoquinones and anthraquinones, (360) and new routes to benzocyclobutenedione derivatives, (361) azaheteroaromatics, (362) and 2-pyrones, the last involving a carbonylative step. (363)

Finally, the oxidative addition of Pd(0) onto silicon halides can be incorporated in a three-component condensation involving 1-alkynes, TMSI, and alkenyl-, alkynyl-, or allylstannanes. An example of this powerful protocol is shown in Eq. 105. (364)

The use of complex strategies centered on, or terminated by, cross-coupling chemistry is an important and expanding synthetic tool that allows the formation of two or more C-C bonds, usually in a regioselective and stereoselective manner.

7. Side Reactions

7.1. Homocoupling Reactions

Homocoupling of stannanes is apparently the most common side reaction observed when attempting Stille couplings. (30, 106, 204, 286, 297, 299, 365) The reaction may even be synthetically useful when symmetrical dienes (366) or biaryls (30) are desired. An obvious source of small amounts of homocoupled product is the reaction of the stannane with the Pd(II) precatalyst when this is employed. Each molar equivalent of Pd(II) reacts with two equivalents of the stannane to afford a symmetrical product. In many cases, however, larger amounts of homocoupling products are observed than can be accounted for in this way, and homocoupling takes place even when employing preformed Pd(0) catalysts. The reaction involves a catalytic cycle that has a radical component and requires atmospheric oxygen. Insertion of Pd(0) in the carbon-tin bond of the stannane is postulated as the first step of the cycle. (30)

Homocoupling of the electrophile is often observed in transition metal-catalyzed cross-coupling reactions, (367) and there is evidence for a mechanism involving the exchange of organic groups between palladium and tin. (368) These authors used bidentate nitrogen-based ligands, and it is not clear whether this exchange occurs in reactions that use phosphorus-based ligands. A similar phenomenon with PPh₃ as ligand, on the other hand, has been documented. (34)

7.2. Transfer of "Nontransferable" Ligands

The Stille reaction usually employs three groups on tin that are not meant to be transferred in the coupling. Overwhelmingly, trialkyl derivatives are used because alkyl groups transfer slowly. Typically, trimethyl- or tributylstannane derivatives are used because of the ready availability of the corresponding trialkyltin halides. Selectivity is not, however, always complete.

For example, phenyltrimethylstannane couples with aryl triflates to yield products resulting from both aryl and methyl group transfer. (189) The selectivity is solvent dependent, dioxane yielding more aryl transfer than DMF or NMP. The phenyl group transfers 37 times more readily than *n*-butyl in NMP, using an aryl triflate as the electrophile. This ratio shows little dependence on the type of ligand. The ratio of the transfer rates of phenyl vs. methyl, on the other hand, is only 5. (30) These data strongly suggest that *n*-butyl groups are preferable to methyl groups as nontransferable moieties. The use of Cu(I) salts as cocatalysts improves this selectivity to >50:1, (33) and this may represent a potentially general solution to the selectivity problem (see also Eq. 61).

An interesting selectivity switch occurs in a hindered Stille coupling using

stannane 24. Whereas exclusive methyl transfer is observed under traditional conditions, use of Cu(I) salts leads to the aryl transfer product 26 in moderate yields (Eq. 106). (280)

Conditions: (i) PdCl₂(dppf), DMF, 25 (80%); (ii) Pd(PPh₃)₄, LiCl, dioxane, CuBr, 90°, 26 (60-64%).

Other reports of alkyl group transfer in competition with the intended transfer of an aryl group are rather widespread, (55, 191, 369, 370) and alkyl group transfer can sometimes be competitive even with alkynyl (219) and alkenyl coupling. (40, 259) Once again, use of Cu(I) has resulted in substantial selectivity improvement in a butyl vs. alkenyl transfer competition. (33)

Further studies aimed at more careful quantification of alkyl group transfer as a side process and at discovering new tools to increase selectivity are definitely warranted.

7.3. Destannylation

Hydrolytic destannylation, probably brought about by traces of water and/or acids in the reaction medium, has been reported in very few cases, perhaps only because such a process in structurally simple stannanes yields volatile products that are difficult to detect. Organostannanes are quite stable hydrolytically, but when electron-rich aryl- or heteroarylstannanes are employed, destannylation may be a serious side reaction. (371, 372)

7.4. Cine Substitution

Cine substitution can be a side process in a cross-coupling reaction, and

Scheme 4 illustrates an example, together with a proposed mechanism. (204) **Scheme 4.** Mechanistic interpretation of cine-substitution.

The first step is obviously an insertion of the arylpalladium intermediate across the double bond of the olefin. Evidently, a direct transmetallation is hindered by the α -phenyl substituent on the stannane. The following steps of β elimination and protodestannylation are reasonable and precedented. Another example of cine substitution requires an *anti* β elimination of palladium and hydrogen, which is a stereoelectronically disfavored pathway. (373)

It has been proposed that species like **28** may be able to undergo an unprecedented α elimination of Bu₃SnX to yield a Pd(0)-carbene species. A study of cine substitution with α -(tributylstannyl)acrylate showed that nonpolar solvents favor cine substitution, whereas ligands of different donicity have remarkably little effect on the product distribution. (245) Other authors have independently observed similar cine substitutions, (374-376) and high-yielding Stille coupling can be restored, once again, by using cocatalytic Cu(I). (246)

Cine substitution is a rare event in the coupling of organostannanes and is so far limited to 1-substituted 1-stannylethylenes, but it is a mechanistically intriguing process. From the mechanistic point of view, use of Cu(I) salts presumably yields intermediate organocopper species, (33) which undergo transmetallation with the "correct" regiochemistry. Silver carbonate has been used in one reaction to avoid cine substitution. (375) The generally of these observations remains to be verified.

7.5. Phosphorus-to-Palladium Aryl Migration

Arylpalladium(II) complexes like **32** (Eq. 107) undergo exchange of substituents between phosphorus and palladium at temperatures as low as 50° to yield **33–35**. (377) Thus, it is remarkable that this scrambling has not been detected

in most of the classical Stille couplings. Recently, however, some examples of side products originating from aryl transfer by the phosphine were reported. (375, 378) Triphenylarsine and tri(2-furyl)phosphine also lead to this side reaction. An obvious way to limit this unwanted process is to run the coupling at as low a temperature as possible.

7.6. Electrophile Reduction

Electrophile reduction is often a side reaction in Stille couplings, especially at high temperatures. It has been observed in the coupling of aryl triflates, (189, 379) heteroaryl iodides, (126, 128) alkenyl halides, (380) and allylic electrophiles. (163) The origin of this side process is uncertain. Alkyl transfer with β elimination prior to reductive elimination may be involved, although a radical mechanism is also possible.

7.7. Product Isomerization

In the coupling of acyl chlorides with alkenylstannanes, *E/Z* isomerization is observed under the coupling conditions. (146) Allylic stannanes, on the other hand, may yield mixtures of α , β - and β , γ -unsaturated ketones. (146) Geometric isomerization of olefins has often been reported as a side reaction. (46, 51, 153, 157, 269, 289, 381, 382) Double bond migration has also been observed quite frequently. (56, 135, 383) It is likely that isomerization occurs at the product stage, but it is not clear whether it is catalyzed by palladium. Mild thermal conditions are believed to prevent or reduce isomerization. In addition, tri(2-furyl)phosphine-based catalysts prevent *E/Z* isomerization in the coupling of acyl chlorides and (*Z*)-alkenylstannanes. (11) The generality of this observation must be verified.

7.8. Miscellaneous Side Reactions

When using aryl triflates, hydrolytic cleavage to the corresponding phenols is a side reaction, especially at high temperatures. (55) Replacement of triflate with chloride owing to the presence of LiCl is a rare event, but it must be kept in mind as a possibility, especially for activated substrates. (40, 173, 195)

When carrying out Stille reactions on substrates containing isolated double bonds, the intermediate organopalladium species may undergo insertion

across the double bond (Heck reaction), as discussed in the section on complex strategies. (336)

Reduction of enones has also been observed. The reducing agent is the tri-butyltin halide produced in the coupling. (148)

In one example, attempted coupling of an acyl chloride with vinyltributylstannane has led to dehydrodecarbonylation. Thus, proline derivative **36** gives **37** in unreported yield (Eq. 108). Use of the catalyst $Pd(dppf)Cl_2$ obviates the problem. (381)

$$\begin{array}{c|ccccc}
 & & & & & \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

In reactions where the electrophile contains a quinone system, reduction to a dihydroquinone is a serious side reaction. (58, 384)

1,1-Dibromoolefins couple with stannanes only once, whereas the second bromine moiety is eliminated (Eq. 109). (385) This side reaction may not be palladium catalyzed.

The large variety of side reactions described for the Stille coupling does not reflect serious weaknesses in this cross-coupling method, but rather the careful scrutiny given to this important synthetic method in recent years. The side reactions can often be minimized or eliminated by using simple modifications of the traditional conditions, such as the use of appropriate ligands, solvents, additives, and temperatures, as described in this section.

8. Comparison with Other Methods

A direct comparison between the Stille reaction and other cross-coupling protocols has been made in only a few cases, and these studies must be regarded with skepticism, since often each particular coupling was not separately optimized, as it should for the comparison to be legitimate. Thus, in a study of several alkenyl-alkenyl couplings in an approach to vitamin A, (386) it was concluded that the Stille coupling was unsatisfactory because of extensive homocoupling and that the reaction of alkenyl iodides with organozinc reagents gave better results. However, a limited set of conditions was explored.

Similarly, it has been concluded that zinc acetylides are better partners than alkynylstannanes in the coupling with certain alkenyl iodides. (387) In the coupling of an iodoglucal with arylmetals, the yields using arylzinc and arylboron compounds were quite superior to the ones obtained with the corresponding stannanes, but only under one set of conditions. (388) Similar conclusions were reached in a related system. (389) The synthesis of polyphenylenes by the Suzuki coupling appears to be superior to the corresponding Stille approach. (390)

Conversely, in other reactions, the Stille protocol outperforms the competition. In the 2-arylation of benzofuran derivatives, the use of organostannanes gives better results than the corresponding zinc derivatives. (391, 392) In the synthesis of tamoxifen analogs, coupling of an alkenyl bromide with organotin, organozinc, and organoboron derivatives gives excellent results in each case. (50) Coupling of tetraalkylstannanes is reported to be superior to alkylaluminum and alkylzinc derivatives. (43) The Stille coupling is also the preferred route to substituted nucleosides. (132, 374) A commonly given reason for preferring the use of organozinc and organoboron reagents over organostannanes is the toxicity of the latter. Conversely, the stannanes are often preferred because of the unusually mild and absolutely neutral conditions their coupling involves.

Bifunctional derivatives bearing a 9-BBN moiety and a tributylstannane residue couple selectively at the boron end under basic conditions (Eq. 110). (393)

In general, the Stille reaction will continue to be a favorite method for carbon-carbon bond formation, owing to the lack of cross-reactivity displayed by the organostannanes with most functional groups. Its general utility is demonstrated by the many diverse applications reported in the tables.

9. Experimental Conditions

9.1. The Stannane: Preparation and Handling

Caution! Many organotin compounds are toxic, especially the lower alkyl derivatives. Their acute toxicity decreases dramatically with increasing alkyl group length. (394, 395) As a precaution, the preparation and use of all stannanes should only be carried out in a well-ventilated hood. After use, all glassware should be thoroughly washed, preferably after soaking in a KOH/alcohol bath to remove surface-bound tin alkoxides and/or halides.

Organostannanes are typically synthesized by reaction of organolithium or organomagnesium derivatives with trialkyltin halides. Another important method is the radical-induced or Pd-promoted addition of tin hydrides to unsaturated systems (e.g., alkynes, alkenes). Very important also is the transition metal-catalyzed cross-coupling of hexaalkyldistannanes with organic electrophiles, as discussed in the section on scope and limitations. Tin acetylides are best formed by the reaction of trialkyltin diethylamide with an alkyne. (396) A thorough treatment of the synthesis of organostannanes is outside the scope of this review, and the reader is referred to reviews on organostannanes. (6, 395)

Most organostannanes are stable to air and moisture and can therefore be distilled and/or chromatographed. Stannanes are often too nonpolar to be efficiently purified on silica gel, but C-18 flash chromatography appears to be useful. (397) Given their ease of purification, for best results stannanes should not be used as crude preparations in Stille couplings.

9.2. Alkenyl and Aryl Triflates

Alkenyl triflates are typically synthesized by the reaction of triflic anhydride with a ketone or aldehyde in the presence of a hindered base, such as 2,6-di-*tert*-butylpyridine. (398, 399) Enolates can be trapped with *N*-aryltriflimides, such as *N*-phenyltriflimide. (400, 401) Vinyl triflates are also available from the addition of triflic acid to alkynes, though regio- and stereochemical considerations may be a problem. (402, 403)

Aryl triflates are readily prepared by the reaction of triflic anhydride with a phenol in the presence of a base such as triethylamine or pyridine. (189) *N*-Phenyltriflimide can also be used for this transformation. (404) A thorough treatment of the synthesis of vinyl and aryl triflates is beyond the scope of this review, and the reader is referred to reviews on the formation and reactions of triflates. (405, 406)

9.3. Choice of Nontransferable Ligands

Using nontransferable ligands is an area of the Stille reaction that needs further improvement. As discussed above, tributylstannane derivatives are usually preferred because of the low cost and low toxicity of tributyltin chloride, as well as the fact that competitive transfer of the butyl groups is a rare event. On the other hand, removal of traces of tributylstannane derivatives from the product can be problematic. Trimethylstannane derivatives have the disadvantage that methyl group transfer can often compete with the desired transfer of the unsaturated group, but the trimethylstannane derivatives produced in the coupling can usually be removed from the product by simple aqueous wash. Nontransferable ligands that speed up the transmetallation have been described in recent years, but have not yet found general acceptance. (41) Trichlorostannates have recently been used and can be employed to carry out Stille reactions in aqueous systems. (282, 283)

9.4. Choice of Catalyst and Ligands

As discussed earlier, both Pd(0) and Pd(II) catalysts may be used to promote the cross-coupling reaction. Pd(II) catalysts have the advantage of being air stable, but must be reduced before entering the catalytic cycle. Typically, reduction is achieved in situ through the homocoupling of two equivalents of stannane, or with some reductant such as carbon monoxide. In rare instances, Pd(II) catalysts are pre-reduced by the addition of a Grignard or hydride reagent (often L-Selectride or DIBAL). (43) Pd(0) catalysts can enter the catalytic cycle directly, but can suffer from air and/or light stability problems.

Most catalysts are commercially available. Some of the most commonly used are: tetrakis(triphenylphosphine)palladium(0), (407) bis(dibenzylideneacetone)-palladium(0), (408) bis(acetonitrile)palladium(II) dichloride, (409) bis(triphenylphosphine)palladium(II) chloride, (410, 411) benzyl[bis(triphenylphosphine)]palladium(II) chloride, (21, 412) 1,1¢-bis(diphenylphosphino)ferrocenepalladium(II) dichloride, (413) and allylpalladium(II) chloride dimer. (414) Catalysts that do not incorporate strong ligands are often used in conjunction with added phosphines. Particularly useful among them are the Pd-dibenzylideneacetone complexes, which are commercially available and air stable. They can be used in conjunction with a variety of ligands. In addition to the traditional triphenylphosphine, ligands of reduced donicity, such as tri(2-furyl)phosphine and triphenylarsine, or increased steric bulk, such as tri(o-tolyl)phosphine, usually lead to much faster coupling. (11) These ligands are all commercially available. Nitrogen-based ligands have been used in a few cases, but their scope and utility have not been well established. (169, 171, 415) In some instances, it is advantageous to completely omit the ligand from the Stille reaction. (5) Ligandless catalysts usually afford high coupling rates but also premature interruption of the catalytic cycle.

9.5. Choice of Solvent

Solvents used include benzene, toluene, xylene, mesitylene, chloroform, 1,2-dichloroethane, THF, DME, dioxane, DMF, DMA, NMP, DMSO, HMPA, and water. Given the stable nature of the stannane organometallic species, it is fair to say that almost any conceivable solvent is likely to be compatible with the Stille protocol. Most couplings are carried out either in an ethereal solvent like THF or dioxane, or in highly dipolar solvents, such as DMF or NMP. Any of these four solvents represents a reasonable first choice when studying a new Stille coupling. The solvents are typically of anhydrous quality, but there does not seem to be a compelling reason to avoid traces of moisture. In many cases the literature specifically mentions that moisture accelerates the reaction. The same can be said about air: Whereas many Pd(0) complexes are air sensitive, during the Stille coupling the active catalyst is normally in the air-stable Pd(II) oxidation state (owing to rapid oxidative addition), and oxygen has no deleterious effect on the reaction. Many Stille reactions have been run in the presence of oxygen: Under these conditions a black precipitate of Pd metal signals the end of the reaction, where air-sensitive Pd(0) species accumulate. However, atmospheric oxygen can sometimes induce efficient homocoupling of the stannane (as discussed in the section on side reactions). In this event, careful deoxygenation by multiple freeze-thaw cycles is recommended.

9.6. Additives

The use of copper salts to facilitate the Stille cross-coupling is one the more significant recent developments in this area; the "copper effect" was discussed in the mechanistic section. The use of silver salts was also mentioned. Zinc chloride has often been used as additive. Yields are often better in the presence of stoichiometric amounts of Zn(II) salts, although the origin and the generality of the effect are not understood. The use of a stabilizing halide source, such as LiCl, and its complex effect on reaction rates in conjunction with the coupling of triflates have been discussed in the mechanistic section. When coupling triflates in ethereal solvents, LiCI appears to be necessary to induce coupling; in DMF or NMP (and presumably other dipolar solvents), LiCI is often unnecessary when coupling alkenyl triflates, whereas it sometimes appears to be necessary when coupling the less reactive aryl triflates. The experimentalist is urged to try the reaction both with and without LiCl. Bases such as triethylamine, (54, 416) diisopropylethylamine, (80) lithium carbonate, (417) sodium carbonate, (298, 418) pyridine, (419) and 2,6-di-*tert*-butyl-4-methylpyridine, (417) have also been employed as additives, presumably to minimize degradation of stannanes by adventitious acid.

Antioxidants, such as BHT, di-*tert*-butylphenol, or *tert*-butylcatechol are sometimes added to minimize side product formation via radical pathways.

Some reactions proceed more rapidly or in higher yield when run under dry air. (19) Palladium compounds catalyze the oxidation of triphenylphosphine to triphenylphosphine oxide by atmospheric oxygen. The rate enhancement

found when running reactions under air may simply be due to the depletion of excess phosphine (see the "Mechanistic Considerations" section).

9.7. Workup: Removal of Tin Halides

A major consideration in working up reaction mixtures from the Stille cross-coupling is the removal of tin byproducts. Trimethyltin chloride is water soluble and rather volatile and is therefore readily removed on normal aqueous workup. Tributyltin chloride has low volatility (bp 171-173° at 25 mm Hg) and is soluble in most common organic solvents. Separation by chromatography on silica gel is made difficult by the tendency for tributyltin chloride to elute under relatively nonpolar conditions and to streak. A variety of methods have been devised to remove bulk tributyltin chloride prior to final purification. Aqueous KF solutions react with tributyltin halides under biphasic conditions to form polymeric tributyltin fluoride, which may be removed by filtration. Ammonia complexes with tributyltin halides, making them somewhat water soluble. Thus, washing of organic solutions with dilute ammonium hydroxide can remove the stannane. (88) Tributyltin chloride is insoluble in acetonitrile. Thus, dissolving crude or partially purified reaction mixtures in acetonitrile followed by washing with hexanes (in which tributyltin chloride is soluble) will remove most of the tin. (420) DBU in wet diethyl ether, followed by filtration through silica, has also been used to remove tributyltin residues. (420a) Scott and Stille proposed that CsF as a coupling additive might cause the formation of tributyltin fluoride in situ, thus facilitating workup. (28)

10.1.1. Trimethyl([3-(cyclohexen-1-yl)-2-propynyl]oxy)silane [Cross-Coupling of a Vinyl Halide with an Alkynylstannane Using Pd(PPh₃)₂Cl₂] (47)

To a solution of 1-iodocyclohexene (0.424 g, 2.04 mmol), and trimethyl[3-(trimethylstannyl)-2-propynyl)oxy]silane (0.592 g, 2.04 mmol) in dry THF (25 mL) was added Pd(PPh₃)₂Cl₂ (0.0215 g, 0.031 mmol). The resulting mixture was stirred at 22–25° for 2 hours. The progress of the reaction was followed by TLC. The reaction mixture was diluted with CH_2Cl_2 , coated onto alumina (10 g), and eluted with pentane. The resulting pentane solution was washed with water (3 × 25 mL) and a saturated NaClsolution (25 mL), dried (K₂CO₃), and concentrated under reduced pressure to give a pale yellow liquid (0.388 g, 92%): ¹H NMR (CDCl₃) δ 0.14 (s, 9 H), 1.48–1.68 (m, 4 H), 2.00–2.15 (m, 4 H), 4.36 (s, 2 H), 6.04–6.12 (m, 1 H); ¹³C NMR (CDCl₃) δ -0.3, 21.5, 22.3., 25.6, 29.1, 51.5, 84.9, 86.8, 120.5, 134.5; IR (neat) 3040, 2218, 1442, 1322, 1258 cm⁻¹; Anal. Calcd for C₁₂H₂₀OSi : C, 69.17; H, 9.67. Found: C, 68.93; H, 9.70.

10.1.2. 4-tert-Butyl-1-vinylcyclohexene [Cross-Coupling of a Vinyl Triflate with a Vinylstannane Using Pd(PPh₃)₄ and LiCl)] (421)

A slurry of $Pd(PPh_3)_4$ (1.18 g, 1.02 mmol) and LiCl (12.9 g, 0.305 mol) in dry THF (500 mL) was stirred for 15 minutes under a static Ar atmosphere, then a solution of 4-*tert*-butylcyclohexenyl triflate (28.0 g, 0.0979 mol) and trimethylvinylstannane (19.0 g, 0.0997 mol) in dry THF (250 mL) was added,

followed by an additional 250 mL of THF. The resulting solution was heated under gentle reflux for 48 hours, then was cooled to room temperature and partitioned between water (500 mL) and pentane (250 mL). The aqueous layer was back-extracted with pentane (2 × 250 mL), and the combined organics were washed with a saturated NaHCO₃ solution (2 × 250 mL), water (2 × 250 mL), and a saturated NaClsolution (2 × 250 mL). The organic extracts were dried (MgSO₄), filtered through a pad of silica gel (4 cm × 4 cm), and concentrated by distillation using a 10-cm Vigreux column. Bulb-to-bulb distillation (Kugelrohr; oven temperature 65–68° at 0.55 mm Hg) gave the desired product (12.6–12.8 g, 78–79%): bp 45° (0.1 mm Hg); ¹H NMR (CDCl₃) δ 0.87 (s, 9 H), 1.08–1.34 (m, 3 H), 1.84–2.36 (m, 4 H), 4.88 (d, *J* = 10.7 Hz, 1 H), 5.04 (d, *J* = 17.5 Hz, 1 H), 5.73–5.75 (m, 1 H), 6.35 (dd, *J* = 17.5, 10.7 Hz, 1 H); ¹³C NMR (CDCl₃) δ 23.8, 25.3, 27.2 (3 C), 27.4, 32.2, 44.4, 109.7, 129.8, 136.0, 139.7; IR (neat) 3100, 3020, 1650, 1610, 1395, 1365, 985, 890 cm⁻¹.

10.1.3. 1-(4-Methoxyphenyl)-4-tert-butylcyclohexene [Cross-Coupling of a Vinyl Triflate with an Arylstannane Using $Pd_2(dba)_3$ and $AsPh_3$] (30)

A solution of Pd₂(dba)₃ (0.0083 g, 0.0184 mmol), AsPh₃ (0.023 g, 0.0734 mmol), and 4-*tert*-butylcyclohexenyl triflate (0.263 g, 0.918 mmol) in anhydrous degassed NMP (5 mL) was allowed to stand until the purple color was discharged (5 minutes), and (4-methoxyphenyl)tributylstannane (0.430 g, 1.083 mmol) in dry NMP (2 mL) was added. The resulting solution was stirred at room temperature for 16 hours, then stirred with a 1 M aqueous KF solution (1 mL) for 30 minutes, diluted with EtOAc, and filtered. The filtrate was washed extensively with water, dried, and concentrated to give a crude oil. The oil was purified by reverse phase flash chromatography (C-18, 10% CH₂Cl₂, 90% CH₃CN) to give a white solid which was recrystallized (MeOH), (0.201 g, 89%): mp 78–79°; ¹H NMR (CDCl₃) δ 0.91 (s, 9 H), 1.22–1.39 (m, 2 H), 1.89–2.02 (m, 2 H), 2.19–2.54 (m, 3 H), 3.80 (s, 3 H), 6.04 (m, 1 H), 6.84 (d, *J* = 9.0 Hz, 2 H), 7.32 (d, *J* = 9.0 Hz, 2 H); Anal. Calcd. for C₁₇H₂₄O : C, 83.55; H, 9.90. Found: C, 83.58; H, 9.85.

10.1.4. 3-Methyl-2-(4-tolyl)-2-cyclopentenone[Cross-Coupling of an Unreactive Alkenyl Halide Under "Modified" Conditions Using Pd(PhCN)₂Cl₂, AsPh₃, and Cul as Cocatalyst] (61)

A solution of 2-iodo-3-methyl-2-cyclopentenone (0.222 g, 1.00 mmol), CuI (0.019 g, 0.10 mmol), AsPh₃ (0.031 g, 0.10 mmol), and Pd(PhCN)₂Cl₂ (0.019 g, 0.05 mmol) in NMP (1 mL) was treated under Ar with *p*-tolyltributylstannane (0.37 mL, 1.20 mmol), and the mixture was heated in an oil bath at 100° for 30 minutes. After cooling, the solution was diluted with EtOAc (100 mL) and washed with aqueous KF (0.67 satd., 3×30 mL) and water (2 × 20 mL). The combined aqueous layers were back-extracted with EtOAc (60 mL). The combined organics were dried (MgSO₄) filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (gradient 2–10% EtOAc in pet. ether) to yield a white solid (0.165 g, 89%): mp 102–103° (EtOAc/pet. ether); ¹H NMR(CDCl₃) δ 7.20 (m, 4 H), 2.61 (m, 2 H), 2.51 (m, 2 H), 2.35 (s, 3 H), 2.15 (s, 3 H); ¹³C NMR(CDCl₃) δ 207.6, 171.2, 140.1, 137.2, 128.9, 34.7, 31.7, 21.2, 18.2. IR (CHCl₃) 1685 cm⁻¹; Anal. Calcd for C₁₃H₁₄O : C, 83.87; H, 7.54. Found: C, 84.06; H, 7.42.

10.1.5. 1-(4-Nitrophenyl)-2-propenone(Cross-Coupling of an Acid Chloride with an Arylstannane) (146)

To a solution of 4-nitrobenzoyl chloride (5.00 mmol) and BnPd(PPh₃)₂Cl (0.015–0.020 g, 0.020–0.026 mmol) in chloroform (1 mL) was added a solution of tributylvinylstannane (5.20 mmol) in chloroform (4 mL). The resulting yellow solution was heated at 65° under dry air until palladium metal precipitated (20 minutes). The reaction mixture was diluted with Et₂O (30 mL) and washed with water (30 mL). The organic phase was shaken with an aqueous KF solution (15 mL of saturated KF solution/15 mL of water) and allowed to stand for

15–30 minutes. The resulting white precipitate (Bu_3SnF) was removed by filtration. The organic layer was separated and again treated with an aqueous KF solution. After decantation from the resulting white precipitate, the organic phase was washed with concentrated NaClsolution, dried ($MgSO_4$), and concentrated under reduced pressure. Treatment of the residue with EtOAc afforded an additional crop of white precipitate, which was removed by filtration through a Celite pad. Following concentration under reduced pressure, recrystallization from chloroform/hexanes gave the product as a yellow solid (0.780 g 88%): mp 87–89°; ¹H NMR(CDCl₃) δ 6.0 (dd, J = 10.2 Hz, 1 H), 6.4 (dd, J = 18.2 Hz, 1 H), 7.1 (dd, J = 18.1 Hz, 1 H), 8.0 (d, J = 9 Hz, 2 H), 8.3 (d, J = 9 Hz, 2 H); IR (KBr) 1670 cm⁻¹; Anal. Calcd. for C₉H₇NO₃: C, 61.02; H, 3.93. Found: C, 61.23; H, 4.11.

10.1.6. 4-Allylacetophenone[Cross-Coupling of an Aryl Triflate under Mild Conditions Using Tri(2-furyl)phosphine as Ligand] (11)

A solution of 4-(triflyloxy)acetophenone (0.566 g, 2.11 mmol) in NMP (3 mL) was treated with anhydrous LiCl (0.268 g, 6.30 mmol), tri(2-furyl)phosphine (0.0392 g, 0.168 mmol), and Pd₂(dba)₃ (0.0193 g, 0.042 mmol Pd). After 10 minutes at room temperature, the solution was treated with allyltributylstannane (0.72 mL, 2.464 mmol) and the mixture was stirred at room temperature for 24 hours. The solution was stirred with a saturated aqueous KF solution, diluted with EtOAc, and filtered. Washing the organics with water, drying (anhydrous Na₂SO₄), and evaporation of the solvent gave a crude oil which was purified by flash chromatography (silica gel, 5% EtOAc in hexanes) to yield a colorless liquid (0.264 g, 78.5%); bp (Kugelrohr) 90–95° (0.2 mmHg); ¹H NMR(CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2 H), 7.27 (d, *J* = 8.2 Hz, 2 H), 5.94 (m, 1 H), 5.13–5.06 (m, 2 H), 3.43 (d, *J* = 6.7 Hz, 2 H), 2.57 (s, 3 H); Anal. Calcd for C₁₁H₁₂O : C, 82.46; H, 7.55. Found: C, 82.11; H, 7.56.

10.1.7. 8-(Trimethylstannyl)quinoline (Preparation of an Arylstannane by Cross-Coupling of an Aryl Triflate with Hexamethyldistannane) (189)

To a solution of 8-(triflyloxy)quinoline (1.98 mmol) in dioxane (9 mL) were added hexamethyldistannane (2.05 mmol), LiCl (0.252 g, 5.94 mmol) Pd(PPh₃)₄ (0.046 g, 0.040 mmol), and a few crystals of BHT. The mixture was heated to reflux for 75 hours, cooled, and treated with pyridine (1 mL) and pyridinium fluoride (1.4 M in THF, 2 mL) for 16 hours at room temperature. The mixture was diluted with Et₂O, filtered through Celite, and washed with water, 10% HCl, water, and brine. Drying (MgSO₄) and concentration afforded an oil. Silica gel chromatography and bulb-to-bulb distillation (bp: 103–104° at 0.4 mm Hg) gave a colorless oil in 67% yield; ¹H NMR(CDCl₃) δ 8.86 (dd, J = 4.2, 1.7 Hz, 1 H), 8.07 (dd, J = 8.2, 1.8 Hz, 1 H), 7.88 (d, J = 6.5, 1.3 Hz, 1 H), 7.75 (dd, J = 8.1, 1.3 Hz, 1 H), 7.49 (dd, J = 8.1, 6.6 Hz, 1 H), 7.31 (dd, J = 8.2, 4.2 Hz, 1 H), 0.30 (s, 9 H); ¹³C NMR(CDCl₃) δ 153.17, 153.06, 149.35, 147.56, 136.94, 127.97, 126.21, 125.83, -8.32; IR (neat) 3050, 2970, 2905, 1485, 810, 785 cm⁻¹; Anal. Calcd. for C₁₂H₁₅NSn : C, 49.37; H, 5.18. Found: C, 49.50; H, 5.25.

10.1.8. 4-(tert-Butyl-1-vinylcyclohexen-1-yl)-2-propenone [Carbonylative Cross-coupling of an Alkenyl Triflate with an Alkenylstannane Using $Pd(PPh_3)_4$ and LiCl] (421)

A slurry of Pd(PPh₃)₄ (1.12 g, 0.968 mmol) and LiCl (13.2 g, 0.312 mol) in dry THF (500 mL) was stirred for 15 minutes under a static Ar atmosphere, then a solution of 4-*tert*-butylcyclohexenyl triflate (28.6 g, 0.100 mol) and trimethylvinylstannane (19.1 g, 0.100 mol) in dry THF (250 mL) was added, followed by an additional 250 mL of THF. The reaction mixture was flushed with carbon monoxide and maintained under a carbon monoxide atmosphere (15–20 psi) while heating to 55°. After 40 hours the reaction mixture darkened and was cooled to room temperature. The resulting solution was diluted with pentane (500 mL), washed with water (2 × 200 mL), saturated NaHCO₃ solution (2 × 200 mL), and brine (2 × 200 mL), then was dried (MgSO₄), filtered through a 4-cm × 4-cm pad of silica gel, and concentrated under reduced pressure. Bulb-to-bulb distillation (Kugelrohr) at 85–95° (0.35 mm Hg) gave the desired product (14.3–14.5 g, 74–75%): bp 75° (0.1 mm Hg); ¹H NMR(CDCl₃) δ 0.81 (s, 9 H), 1.21–2.65 (m, 7 H), 5.58 (d, *J* = 9.0 Hz, 1 H),

6.14 (d, J = 17.2 Hz, 1 H), 6.75–7.00 (m, 2 H); ¹³C NMR(CDCl₃) δ 23.3, 24.6, 26.9 (3 C), 27.8, 32.0, 43.4, 127.1, 131.5, 141.1, 190.8; IR (neat) 1665, 1645, 1612 cm⁻¹.

10.1.9. (E)-1-(4-Methoxyphenyl)-3-phenyl-2-propenone [Carbonylative Cross-Coupling of an Aryl Triflate with an Alkenylstannane Using Pd(dppf)Cl₂ and LiCl] (336)

To a solution of 4-methoxyphenyl triflate (0.390 g, 1.52 mmol) in DMF (7 mL) was added (*E*)-(β -tributylstannyl)styrene (0.645 g, 1.64 mmol), LiCl (0.200 g, 4.72 mmol), Pd(dppf)Cl₂ (0.045 g, 0.060 mmol), a few crystals of BHT, and 4 Å molecular sieves (0.10 g). The resulting mixture was heated at 70° under 15 psi of CO. After 23 hours the reaction was cooled to room temperature, diluted with Et₂O, and filtered. The filtrate was washed with water (3 times) and saturated NaClsolution, dried (MgSO₄), and concentrated. The resulting material was purified by chromatography (silica gel, 10:1 hexanes/EtOAc) to give the product as a white solid (0.250 g, 68%), which was recrystallized from 20:1 hexanes/EtOAc: mp 105–106° ¹H NMR(CDCl₃) δ 3.82 (s, 3 H); 6.94, (d, J = 8.8 Hz, 2 H), 7.36–7.39 (m, 3 H), 7.53 (d, J = 15.7 Hz, 1 H), 7.59–7.63 (m, 2 H), 7.79 (d, J = 15.7 Hz, 1 H), 8.03 (d, J = 8.9 Hz, 1 H).

11. Tabular Survey

The literature was searched to the end of 1994 by Chemical Abstracts, extensive citation searches and browsing. A few of the papers which describe Stille couplings but are missing a vital piece of information (i.e., clear structure of substrates and/or products) were not abstracted. No attempts were made to cover the patent literature. A dash indicates lack of reported yield. When only GLC, NMR, or HPLC yields were reported, these were simply incorporated in the tables without specific notation. When both isolated and "estimated" yields were given, the isolated yields are shown in the tables. If experimental conditions were not given, the appropriate column usually contains the generic statement "Pd(0)". Reactions that appear well documented but afford none of the anticipated product are still reported, and 0% yield is shown next to the structure of the expected product. We think failed reactions may stimulate further research and new thinking. In some papers, the attempt to optimize a reaction led to many experiments done on the same substrate under slightly different catalytic conditions. In most cases, for the sake of simplicity, we report only the highest yielding of all these experiments. However, in some cases the comparison of two or more sets of conditions on the same substrate proves a point which, in our opinion, was important enough to warrant a separate entry.

Some of the 1995 papers were incorporated in the tables as they appeared in the literature, but only those which, in our opinion, reported new catalytic systems or new classes of substrates.

The substrates are broken down into specific classes according to electrophile type, to reflect the classification made in the "Scope and Limitations" section. Some classes (heterocyclic or acyl electrophiles) are further broken down into subclasses to facilitate target finding. The electrophiles are listed in order of increasing carbon count for the moiety that is being transferred (the leaving group is not included in the carbon or heteroatom count). Within a given C count, they are listed in order of increasing numbers of heteroatoms, the priority being assigned alphabetically except for H, which has *the lowest* priority. For example C₆H₅CIO has priority over C₆H₅O and/or C₆H₆CIO . This ranking was the simplest and visually the most pleasing of a number of alternatives that we examined.

Electrophiles where the halide moiety is attached to a heterocyclic system or an aryl ring fused to a heterocyclic system (be it aromatic or partially saturated) are considered heterocyclic electrophiles. If the heterocyclic portion is *isolated* from the electrophilic moiety, then it is not considered.
The stannanes are similarly arranged according to the moiety that is being transferred. Tin hydrides are listed first, then all the C-based nucleophiles in the order explained above (in addition, trimethylstannanes have priority over tributylstannanes and bis[stannanes] are listed after all the monostannanes within a given electrophile), then the heterostannanes are listed (priority is assigned based on the alphabetical rank of the atom whose bond to tin is being broken). Intramolecular Stille couplings are listed in separate tables. A special case is the coupling of bis(stannanes) with bis(electrophiles), ultimately yielding a cyclic product. These reactions are listed twice: once in the appropriate table for the Stille coupling which our mechanistic knowledge tells us is taking place first, the second time in the intramolecular table. We realize this is cumbersome and causes duplication, but it seems the only logical way of dealing with the problem in an informative way. Other, more complex strategies in which the Stille reaction is coupled to other reactions are listed separately in Tables XXXII (no CO involved) and XXXIII (CO involved). The structures of stannanes that were formed in situ are enclosed in brackets.

The following abbreviations are used in the tables:

BINAP	2,2¢-bis(diphenylphosphino)-1,1¢-binaphthyl
Bn	benzyl
Boc	tert-butoxycarbonyl
BOM	benzyloxymethyl
Bz	benzoyl
Cbz	benzyloxycarbonyl
d	day(s)
dba	dibenzylideneacetonyl
DIOP	2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis-(diphenylphosphino)butane
DME	1,2-dimethoxyethane, glyme
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
dppb	1,3-bis(diphenylphosphino)butane
dppf	1,1'-bis(diphenylphosphino)ferrocene
dppp	1,3-bis(diphenylphosphino)propane
EE	(1-ethoxy)ethyl
FMOC	fluorenylmethyloxycarbonyl
HMPA	hexamethylphosphoric triamide
MEM	methoxyethoxymethyl
MOP	2-diphenylphosphino)-2'-methoxy-1,1-binaphthyl
MOM	methoxymethyl

Ms	methanesulfonyl
NMP	N-methylpyrrolidinone
Ph-BIAN	bis(phenylimino)acenaphthene
PMB	<i>p</i> -methoxybenzyl
PNB	<i>p</i> -nitrobenzyl
rt	room temperature
SEM	(2-trimethylsilylethoxy)methyl
TBDMS	tert-butyldimethylsilyl
TBDPS	tert-butyldiphenylsilyl
Tf	trifluoromethanesulfonyl
Thexyl	1-(1,1,2-trimethyl)propyl
TIPS	tri(isopropyl)silyl
THF	tetrahydrofuran
THP	tetrahydropyranyl
TMS	trimethylsilyl
<i>p</i> -Tol	<i>p</i> -tolyl
Ts	<i>p</i> -toluenesulfonyl

Table I. Direct Cross-Coupling of Alkenyl Electrophiles

View PDF

Table II. Intramolecular Cross-Coupling of Alkenyl Electrophiles

View PDF

Table III. Direct Cross-Coupling of Aryl Electrophiles

View PDF

Table IV. Intramolecular Cross-Coupling of Aryl Electrophiles

View PDF

Table V. Direct Cross-Coupling of Furan and Benzofuran Electrophiles

View PDF

Table VI. Direct Cross-Coupling of Pyrrole and Indole Electrophiles

View PDF

 Table VII. Direct Cross-Coupling of Thiophene and Benzothiophene

 Electrophiles

View PDF

Table VIII. Direct Cross-Coupling of Pyran and Benzopyran Electrophiles

Table IX. Direct Cross-Coupling of Pyridine Electrophiles

View PDF

Table X. Direct Cross-Coupling of Pyrimidine Electrophiles

View PDF

Table XI. Direct Cross-Coupling of Quinoline and IsoquinolineElectrophiles

View PDF

 Table XII. Direct Cross-Coupling of Miscellaneous Heterocyclic

 Electrophiles

View PDF

Table XIII. Direct Cross-Coupling of Acyl Chlorides: Alkyl Systems

View PDF

Table XIV. Direct Cross-Coupling of Acyl Chlorides: Aryl Systems

Table XV. Direct Cross-Coupling of Acyl Chlorides: Benzyl Systems

View PDF

Table XVI. Direct Cross-Coupling of Acyl Chlorides: Alkenyl Systems

View PDF

 Table XVII. Direct Cross-Coupling of Acyl Chlorides: Heterocyclic

 Systems

View PDF

Table XVIII. Direct Cross-Coupling of Chloroformates and Carbamoyl Chlorides

View PDF

 Table XIX. Intramolecular Cross-Coupling of Acyl Chlorides and Chloroformates

Table XX. Direct Cross-Coupling of Allyl and Propargyl Electrophiles

View PDF

 Table XXI. Direct Cross-Coupling of Benzyl Electrophiles

View PDF

 Table XXII. Intramolecular Cross-Coupling of Allyl and Benzyl

 Electrophiles

View PDF

Table XXIII. Direct Cross-Coupling of Organometallic Electrophiles

View PDF

Table XXIV. Direct Cross-Coupling of Miscellaneous Electrophiles

View PDF

 Table XXV. Carbonylative Cross-Coupling of Alkenyl Electrophiles

View PDF

Table XXVI. Carbonylative Cross-Coupling of Aryl Electrophiles

View PDF

Table XXVII. Carbonylative Cross-Coupling of Heterocyclic Electrophiles

View PDF

 Table XXVIII. Carbonylative Cross-Coupling of Allyl and Benzyl

 Electrophiles

View PDF

 Table XXIX. Carbonylative Cross-Coupling of Miscellaneous

 Electrophiles

View PDF

Table XXX. Intramolecular Carbonylative Cross-Coupling Reactions

Table XXXI. Cross-Coupling Reactions that Form Polymers

View PDF

Table XXXII. Multi-Step Transformations Involving Direct Cross-Coupling Reactions

View PDF

Table XXXIII. Multi-Step Transformations Involving Carbonylative Cross-Coupling

		Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	C ₂	<i>⊮</i> [™] Br	Me ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, neat. 80°, 12 h	OEt (80)	270
			Bu ₃ Sn TMS	Pd(PPh ₃) ₄ (5%), THF, 66°		422
			Mc ₃ Sn OEt TBDMS	BnPd(PPh ₃) ₂ Cl (1%), CuI, DMF, 50°	OEt (66) TBDMS	49
			H ₂ N Bu ₃ Sn SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 1 h	(84)	74
62				Pd(PPh ₃) ₄ (10%), CuI (20%), DMF, 80°, 100 min		170
			Bu ₃ Sn OBn OBn OBn	Pd(0)	OBn (22-30) OBn	423, 424
			Bu ₃ Sn TMS	Pd(PPh ₃) ₄ (5%), THF, 66°		422
		CI CI	$Bu_3Sn \longrightarrow C_5H_{11}-n$	Pd(PPh ₃) ₄ , DMF	$Cl \underbrace{OH}_{OH} C_5H_{11} \cdot n (\geq 46)$	44
			Bu ₃ Sn OH OH OH	Pd(PPh ₃)4, DMF	$CI \xrightarrow{OH} C_5 H_{11} \cdot n $ (61) OH	44
	C ₃	Br	$\begin{bmatrix} OSnBu_3 \\ Bu \cdot r \end{bmatrix}$	Pd{P(v-Tol) ₃] ₂ Cl ₂ (0.66%). PhMe, 100°	Bu- <i>t</i> (53)	239,240
			Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux, 20 h	$\bigvee_{\substack{N\\M_e^{\prime}}} (50)$	425
			Bu ₃ Sn	$Pd(PPh_3)_2Cl_2$ (2%), THF, reflux, 20 h	SEM (50)	425
			Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe or xylene, 100-120°	(0) NEt2	316
63		HO ₂ C. Br	PhSnCl ₃	PdCl ₂ , KOH, 90°	HO ₂ C Ph (77)	281
			PhSnCl ₃	PdCl ₂ , KOH, 90°, PhP(m -C ₆ H ₄ SO ₃ Na) ₂	HO ₂ C Ph (83)	281
	6	HO ₂ CI	Bu ₃ Sn O	Pd(0)	HO ₂ C (>15)	54
	C1	EtI	$Me_3SnC \equiv C(CH_2)_{10}OAc$	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 25°	$C \equiv C(CH_2)_{10}OAc$ (86)	47
		Br	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe, 100°	(62)	239,240
			OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe, 100°	(53)	239,240
			OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe, 100°	(35)	239,240

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
I-Ph+OTf-	Bu₃SnC≡CPh	BnPd(PPh ₃) ₂ Cl (5%), CuI (8%), DMF, rt, 30 min	C ² CPh (64)	188
I-Ph ⁺ OTf ⁻	$Bu_3SnC\equiv CPh$		C _S CPh (66)	188
Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°, 6 h	SEM (92)	289
	TsHN Bu ₃ Sn N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°, 3 h	NMIS N SEM (78)	74
O Br	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (4%), DMF, 70°, 6 h	(70)	287
Br	u	'n	(77) 0 (77)	287
	Bu ₃ Sn OH	[(ŋ ³ -C ₃ H ₅)PdC1] ₂ , DMF, rt, 24 h	ОН (66)	287, 432
	Bu ₃ Sn O O	[(η ³ -C ₃ H ₅)PdCl] ₂ , DMF, 70°, 1 h	0 (79)	287
но		Pd(PPh ₃) ₄ (10%), 3 Cul (20%), DMF, 80°, 1 h	о ни момо о о о о о о о о о о о о о о о о о	170
O O Br	Bu ₃ Sn S	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 13 h		63
	Bu ₃ SnC≡CTMS	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	TMSC ^C C (57)	63
	Bu ₃ SnPh	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 6 h	Ph (85)	63
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 15 h		63
	Bu ₃ SnC≡CBu- <i>n</i>	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	(55)	63
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 10 h		63

$s_{s}SnSPh$ OEt $s_{s}Sn$ $s_{s}Sn$ $s_{s}Sn$ $s_{s}SnC \equiv CTMS$ SnPh $s_{s}SnC \equiv CBu-n$ $s_{s}Sn$	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 3 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 10 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 15 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	$PhS \qquad (88)$ $PhS \qquad (62)$ (62) (65) (65) $TMSC^{2}$ (65) $TMSC^{2}$ (70) $Ph \qquad (50)$ $n-BuC^{2}$ (81)	 63 63 63 63 63 63 63
OEt $_{3}Sn \longrightarrow S$ $_{3}Sn \longrightarrow S$ $_{3}Sn \longrightarrow S$ $_{3}Sn \square \square \square$ $_{3}Sn \square \square$ $_{3}Sn \square \square$ $_{3}Sn \square$	BnPd(PPh ₃) ₂ Cl (2%). THF, 50°, 10 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 15 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	(62) (62) (62) (65) (65) (56) $TMSC'$ (70) Ph (70) Ph (50) (81) (81)	 63 63 63 63 63
$_{s}Sn \frown_{S}$ $_{s}SnC \equiv CTMS$ $_{s}SnPh$ $_{s}SnC \equiv CBu-n$ $_{s}Sn$	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 15 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	OEt (65) (56) $TMSC^{2}$ (70) Ph (50) $n-BuC^{2}$ (81) (81)	63 63 63 63
snC≡CTMS snPh snC≡CBu- <i>n</i> sn Sn OTHP	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	$TMSC^{+}C^{+}O^{-}(56)$ $TMSC^{+}C^{+}O^{-}(70)$ $Ph^{+}O^{-}(50)$ $n-BuC^{+}C^{+}O^{-}(81)$ (81)	63 63 63 63
SnPh SnC≡CBu- <i>n</i> SnOTHP	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	$Ph \qquad O \qquad (70)$ $Ph \qquad O \qquad (50)$ $n-BuC \qquad (81)$ (81)	63 63 63
sSnC≡CBu- <i>n</i> sSn SnOTHP	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h	(50) n-BuC ² C (81)	63 63
Sn OTHP	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 20 h		63
Sn OTHP	DaD4(DDI-) CL(2C)		
	Bnrd(Frn ₃) ₂ Cl (2%), THF, 50°, 20 h	THPO (61)	63
,SnSPh	BnPd(PPh ₃) ₂ Cl (2%), THF, 50°, 8 h	O (80)	63
Sn N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°, 30 min	EtO ₂ C N SEM	289
	Pd(PPh ₃) ₄ (10%), Bu ₃ Cul (20%), DMF, 80°, 75 min	$MOMO \xrightarrow{O}_{O} O \xrightarrow{O}_{O} O \xrightarrow{(56)} O$	170
Sn N SFM	Pd(PPh ₃) ₄ (2%), <i>m</i> -xylene, 120°, 20 h	$\bigcup_{i=1}^{CO_2Et} \bigvee_{i=1}^{N} \bigcup_{i=1}^{N} (40)$	433
ssn s	$Pd(PPh_3)_2Cl_2$. THF, reflux	EtO_2C (74)	434
^{Bu-n} ² C SnBu ₃	Pd(PPh ₃) ₄ (10%), CuI (75%), DMF, п, 7 h	EtO ₂ C (66)	435
	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%),	CO_2Et (53) $Z.E = 87.13 +$ EtO_2C	375
;	Sn SEM SEM SEM Sn Bu-n $SnBu_3$ $SnBu_3$ CO_2Et Sn NHAc	$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE I. DIREC	F CROSS-COUPLING OF	ALKENYL ELECTROPH	HILES (Continued
----------------	---------------------	-------------------	------------------

Sub	strate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs
		Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%). THF, 65°	EtO ₂ C ² CO ₂ Et (84) NHAc	375
Aco	I	Me ₃ SnC≡CTMS	Pd(PPh ₃) ₄ (5%). THF, 50°	Aco C C C C C C C C C C C C C C C C C C C	431
OTf CO ₂ Me		Bu₃SnC≡CPh	Pd(OAc) ₂ (7%). PPh ₃ (14%), THF, 55°, 30 min	PhC ² CO ₂ Me (56)	436
TMS Br		Me ₃ SnSPh	Pd(PPh ₃) ₄ (3%). C ₆ H ₆ , 80°, 40 h	$= \underbrace{TMS}_{SPh} \mathbf{I} (67) + \underbrace{TMS}_{TMS} \mathbf{I} (21)$	317
TMS	<i>E</i> : <i>Z</i> = 87:13	Me ₃ SnSPh	Pd(PPh ₃) ₄ (3-4%), C ₆ H ₆ , 40°, 2 h	H (91)	317
	<i>E</i> : <i>Z</i> = 9:1	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°, 1 h	TMS N (93) SEM	289
	<i>E</i> : <i>Z</i> = 100:0	H ₂ N Bu ₃ Sn N SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 1.5 h	TMS N SEM (98)	74
OTf		Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (0.45%), LiCl, THF, 60°, 4 h	SnMe ₃ (72)	176
OTf		Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), LiCl, Li ₂ CO ₃ ,THF, 60°, 96 h	SnMe ₃ (80)	176
		Me₃SnC≡CH	Pd(PPh ₃) ₄ , THF, 22-25°, 24 h	C ^{≤CH} (90)	47
		Bu ₃ Sn OH	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 8 h	(61) OH	46
		۳	Pd(PPh ₃) ₄ (1.5-2%), DMF, 25°, 23 h	" (80)	46
		n	Pd(PPh ₃) ₂ Cl ₂ (1.5-2%), DMF, 25°, 23 h	" (90) ≪CTMS	46
		Me ₃ SnC≡CTMS	Pd(PPh ₃) ₄ , THF. 22-25°, 3 h	(96)	47
		0	Pd(PPh ₃) ₄ (5%), THF. 50°	" () O	431
		Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	(62) (62)	437
		Bu ₃ Sn N	Pd(PPh ₃) ₄ (5%), THF, 65°	"(48)	437
		Ph ₃ Sn N	Pd(PPh ₃) ₄ (5%), THF, 65°	" (53)	437
	$\left[\begin{array}{c} \\ \end{array}\right]_{n}$	Bu CO ₂ Me	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 80°, 68 h	CO ₂ Me (68)	376
		Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 25°, 23.5 h	CO ₂ Et (69)	46

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn CO ₂ Et	Pd(PPh ₃) ₄ (1-2%), DMF, 25°, 12 h	CO ₂ Et (59)	46
	Bu ₃ Sn O ^S O	Pd(PPh ₃) ₄ (5%). THF, rt, 24 h		4.38
	Me ₃ SnC≡C−−OTMS	Pd(PPh ₃) ₄ . THF, 22-25°, 3 h	C ^E C ^T OTMS (76)	47
		Pd(PPh ₃) ₂ Cl ₂ . THF, 22-25°, 2 h	" (92) O	47
	Me ₃ Sn N O	Pd(PPh ₃) ₄ (5%), PhMe, reflux	(58)	437
	Bu ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, 111°	" (63) ≈CPh	437
	Me ₃ SnC≡CPh	Pd(PPh ₃) ₂ Cl ₂ , THF, 22-25°. 10 h	(90)	47
/	$Bu_3SnC\equiv CPh$	Pd(PPh ₃) ₂ Cl ₂ , THF, 22-25°, 50 h	" (92)	47
	n Bu Bu Bu	Pd(PPh ₃) ₄ , PhMe, 55°, 50 h	" (51)	376
	Me ₃ SnC≡C−−OBn	Pd(PPh ₃) ₂ Cl ₂ , THF, 22-25°,18 h	C ² C (91)	47
	MeO ₂ C Bu ₃ Sn H	Pd(PPh ₃) ₄ (5%), Et ₃ N, MeCN, 100°, 8 h	McO ₂ C N H OEt (58)	290
)TO	OEt Me ₃ Sn	Pd(PPh ₃₎₄ (5%), LiCl, THF, 60°, 16 h	(82)	270
	Ph_3SnF_2 Bu_4N^+	Pd(PPh ₃) ₄ , THF, reflux, 30 min	(83)	283
	Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	CO ₂ Ei (47) NHAc	375
	Bu ₃ Sn NHAc	9	NHAc (79)	375
	O OBn Bu ₃ Sn Pr-n	Pd2(dba)3 (2%), LiCl, DMF, n	O OBn (53) Pr-n	439
	Me ₃ SnSnMe ₃	Pd(PPh3)4 (1.8%), LiCl, THF, 60°, 3 h	SnMe ₃ (81)	176
	Bu3SnSnBu3	Pd(PPh ₃) ₄ (1%), LiCl, THF, 60°, 12 h	SnBu ₃ (22)	176
l-Ph+BF₄⁻	Me ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 15 min	Ph (63)	187
	Bu ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 1 h	" (63)	187

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
n-Bu	Me ₃ SnC≡CH	Pd(PPh ₃) ₄ , Et ₂ O, 22-25°, 22 h	л-Bu	47
	Bu ₃ Sn OH	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%). DMF. 25°, 8.5 h	<i>n</i> -Bu (74)	46
	HO Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), DMF. 70°. 5 h	HO (41)	440
	Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 4 h	<i>n</i> -Bu (83) $E,E:Z,E = 94:6$	46
	Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 4 h	n-Bu (78) CO ₂ Et	46
	MeO ₂ C Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), Et ₃ N, CuI, CH ₃ CN, 100°, 8h	n-Bu H (71)	290
	Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ (2-5%), DMF, 50°, 70 h	$\begin{array}{ccc} TMS & TMS & CO_2Et \\ n-Bu & & & \\ & & & \\ & & & \\ & & & \\ & & H & \\ & & & H \end{array} + \begin{array}{c} TMS & CO_2Et \\ & & & & \\$	441
		Pd(CH ₃ CN) ₂ Cl ₂ (2-5%), HMPA, 80°, 20 h	(10) (13) (30) (5)	441
	Bu ₃ Sn OSO	Pd(PPh ₃) ₄ (5%), THF, rt. 24 h	<i>n</i> -Bu (41)	438
	Me ₃ SnC≡CTMS	Pd(PPh ₃) ₄ , THF, 50°, 24 h	<i>n</i> -Bu (78)	47
	u	Pd(CH ₃ CN) ₂ Cl ₂ , THF, 22-25°, 3 h	CTMS " (89)	47
	Me ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 4 h	n-Bu TMS (68) + Me ₃ Si \sim TMS (57)	46
	Me ₃ SnC≡CBu- <i>n</i>	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, -50° , 3 min	$n-Bu \longrightarrow C \equiv CBu-n$ (88)	47
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (5%), Cul(7-10%), DMF, rt		12
	i-PrO Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (5%), Cul(7-10%), DMF, rt	<i>i</i> -PrO 0 (66)	12
	$Me_3SnC \equiv C(CH_2)_4OAc$	$Pd(CH_3CN)_2Cl_2, DMF,$ -50°, <2 min	$n-Bu - C \equiv C(CH_2)_4OAc $ (97)	47
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , DIBAL, THF, rt	$n-Bu$ $C_8H_{17}-n$ (88)	442
	$Me_3SnC \equiv C(CH_2)_4OTHP$	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 25°	<i>n</i> -Bu $C \equiv C(CH_2)_4OTHP$ (91)	47
-Bu l	Bu ₃ Sn OH	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 9 h	n-Bu (78)	46
	Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 4 h	<i>n</i> -Bu (65)	46
	Bu ₃ Sn CO ₂ Et	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%),	<i>n</i> -Bu (62)	46

TABLE I. DIRECT	CROSS-COUPLING OF	ALKENYL ELECTROPHIL	LES (Continued
-----------------	-------------------	---------------------	----------------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn S	Pd(PPh ₃) ₄ (5%), THF, rt, 24 h	n-Bu (40)	438
	Me ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 6 h	n-Bu TMS (25) + TMS (53)	46
	$Me_3SnC \equiv C(CH_2)_4OAc$	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 22-25°, 1 h	n-Bu $C\equiv C(CH_2)_4OAc$ (91)	47
r-Bu	MeaSn	Pd(CH ₃ CN) ₂ Cl ₂ or Pd(0)/P(2-furyl) ₃ , DMF	r-Bu (64)	443
	Me ₃ Sn SnMe ₃	n	<i>t</i> -Bu (42)	443
Bu-n	Me ₃ SnCΞCTMS	Pd(PPh ₃) ₄ (5%), THF. 50°	Bu-n ()	431
Bu-n OTf	Me ₃ Sn TMS	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 17 h	<i>n</i> -Bu (90)	28, 444
	OEt Me ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 60°, 48 h	<i>n</i> -Bu OEt (94)	270
OTf	Me ₃ Sn	Pd(PPh ₃)4 (3%), LiCl, dioxane, reflux, 16 h	CN CHO (76)	445
O Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°, 4 h	O N SEM (87)	289
	Me₄Sn	Pd(PhCN) ₂ Cl ₂ (5%). AsPh ₃ (10%). Cul (10%). NMP, 80-85°, 40 h	(46)	446
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, rt. 18 h	(60)	61
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%), NMP 80° 40 min	(75)	61
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%). A _s Ph ₃ (10%), CuI (10%), NMP, 80°, 4 h	(86)	61
0 I	Bu ₃ Sn C ₈ H ₁₇ -n	Pd(dba) ₂ (4%), P(2-furyl) ₃ (8%), THF, 25°, 48 h	$C_8H_{17}-n$ (84)	447
0 ITO	Bu ₃ Sn MeO	Pd2(dba)3 (1%), NMP, rt	0 0 0 0 0 0 0 0 0 0 0 (77)	30, 448
	Bu ₃ Sn	Pd2(dba)3 (1%), LiCl NMP, rt	O TBDMS (83)	30, 448
OTT	Bu ₃ Sn	Pd(OAc) ₂ (7%), PPh ₃ (14%). THF, 55°. 1 h	о (60)	436

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, THF	0 + 0 ()	173
	Bu₃SnC≡CPh	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF. 55°, 40 min	0 (91) C ^S CPh	436
OMS	Bu ₃ Sn Bu-n	Pd(PPh ₃) ₄ (5%), LiBr, THF, reflux, 36 h	(50) E:Z = 91:9	173
HO(CH ₂) ₄	Me ₃ Sn Bu-n	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°	<i>n</i> -Bu (CH ₂) ₄ OH (73)	46
O I	Me₄Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, 80-85°	(84)	446
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, 90°, 20 min	0 (81)	61
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, 100°, 30 min	(93)	61
	Bu ₃ Sn		(89)	61
O I	Bu3Sn	BnPd(PPh3)2Cl (3%), THF, 55°	0 (85) 0	52
	Bu ₃ Sn VOTHP	н	(80)	52
O U OTr	Bu ₃ Sn N Ts	Pd₂(dba)₃ (2.5%), AsPh₃ (10%), DMF, 60°, 1 h	O (94)	291
но	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, rt, 12 h	HO (76)	449
OH	Bu ₃ Sn	Pd(OAc) ₂ , PPh ₃ , THF	$\begin{array}{c} OH & \frac{X}{Br} \\ OH & I \end{array} \begin{array}{c} (23) \\ (26) \end{array}$	450
ОН	Bu ₃ SnCN	Pd(OAc) ₂ , PPh ₃ , THF, 50°, 4 h	CN OH (52)	450
	Bu ₃ Sn	Pd(OAc) ₂ , PPh ₃ , THF		450
			P.,	

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTf CO ₂ Et	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), AsPh ₃ (8%), NMP, rt	MeO (72) $E:Z = 95:5$ CO ₂ Et	30, 448
		Bu ₃ Sn C C CTMS	Pd ₂ (dba) ₃ (3%), AsPh ₃ (6%), NMP, 35-40°	EtO_2C (92) $C\equiv CTMS$	278
C	E:Z = 68:32	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (3-4%), PhMe, 60°, 3 h	(85) $E:Z = 98:2$	317
C ₇	OTf	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (2%), LiCl, THF, reflux, 3.5 h	SnMe ₃ (71)	451
	OTf	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, THF, reflux, 12 h	(97)	452
		Bu ₃ Sn	Pd(OAc) ₂ (10%), CH ₂ Cl ₂ , rt, 30 min	(>90)	453
		Me ₃ Sn TMS	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 6 h	TMS (100)	28, 444
		$Ph_3SnF_2^-Bu_4N^+$	Pd(PPh ₃) ₄ , THF, reflux, 30 min	Ph (85)	283
	1	Me ₃ SnSnMe ₃	Pd(PPh3)4 (1.8%), LiCl, THF, 60°, 9 h	$\int_{1}^{1} \operatorname{SnMe}_{3}$ (84)	176
	OTf	Me ₃ Sn	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux 100 h	(90)	28, 444
		$Ph_3SnF_2^-Bu_4N^+$	Pd(PPh ₃) ₄ , THF, reflux, 30 min	Ph (84)	283
		Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), LiCl, Li ₂ CO ₃ , THF, 60°, 168 h	SnMe ₃ (80)	176
	OTf	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (1.8%), LiCl, THF, 60°, 0.75 h	SnMe ₃ (73)	176
	+ OTF	Bu ₃ Sn OH	Pd(PPh ₃) ₄ , LiCl, THF	+ OH (11)	454
	<i>n</i> -Bu	Me ₃ Sn O	Pd(PPh ₃) ₄ , DMF, rt, 20 h	n-Bu OTBDMS (58) +	455
		~		TBDMSO OTBDMS (34	-)
	n-C ₅ H ₁₁	$\langle N \rangle$ $\langle N $	[$(\eta^3$ -C ₃ H ₅)PdCl] ₂ . CH ₃ CN, THF, rt, 5 min	<i>n</i> -C ₅ H ₁₁ (85)	41

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Pd(CH ₃ CN) ₂ Cl ₂ , DMF, rt, 3 h	<i>n</i> -C ₅ H ₁₁ OMOM (81)	41
	OMOM Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%). Cul (8%), DMF, 60°, 24 h	<i>n</i> -C ₅ H ₁₁ (71)	287
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), THF, rt, 24 h	n-C ₅ H ₁₁ (34)	438
		Pd(PPh3)4 (5%), PhMe, reflux	$n-C_5H_{11}$ N I (79)	437
		Pd(PPh ₃) ₄ (5%), PhMe, 111°	I (67)	437
	Ph ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	$I (46) + n - C_5 H_{11} \longrightarrow Ph$ (24)	437
	Bu ₃ Sn So	Pd(PPh ₃) ₄ (5%), THF, rt, 24 h	$n \cdot C_5 H_{11}$ (36)	438
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	$n-C_5H_{11}$ N I (64)	437
	Bu ₃ Sn N	Pd(PPh ₃) ₄ (5%), THF, 65°	I (43)	437
	Ph ₃ Sn N	Pd(PPh ₃) ₄ (5%). PhMe. reflux	$I_{-}(52) + \frac{1}{n \cdot C_5 H_{11}} \sim Ph^{-}(19)$	437
	MeaSn N(Pr-i)2	$Pd(PPh_3)_4 (5\%),$ PhMe, reflux	(71)	437
$n - C_5 H_{11}$ 1 $E:Z = 83:17$	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (3-4%). PhMe, 65°, 6 h	$n - C_5 H_{11} \qquad \qquad SPh \qquad (70)$	317
n-C ₅ H ₁₁ I	$\langle N \rangle$ Sn Me	$\{(\eta^3-C_3H_5)PdCl\}_2,$ CH ₃ CN, THF, rt, 5 min	$n - C_5 H_{11} $ (85)	41
	$\langle N \rangle$	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, rt, 3 h	$n - C_5 H_{11}$ OMOM (85)	-41
	Bu ₃ Sn So	Pd(PPh ₃) ₄ (5%), THF. rt. 24 h	(32)	438
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%). THF, rt, 24 h	n-C ₅ H ₁₁ (39)	438
C ₅ H ₁₁ -n Br	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (3%), PhMe, 110°, 4.5 h	$\frac{C_{5}H_{11} \cdot n}{SPh} (77) + \frac{1}{u \cdot C_{5}H_{11}} (22)$	317
C ₅ H ₁₁ - <i>n</i> OTf	Bu ₃ Sn NHAc	Pd ₂ (dba) ₃ (5%). AsPh ₃ (40%), THF, 65°	$n-C_{5}H_{11}$	375
	Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	$C_{5}H_{11}-n \qquad NHAc \qquad (58)$	375

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL	ELECTROPHILES (Continued)
---	---------------------------

TABLE I. DIRECT CROSS-COUPLING	OF ALKENYL ELECTROPHILES (Continue

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	R1		R ¹ OH	67
	Me_3Sn R^2	$Pd(PPh_3)_2Cl_2 (10\%),$ dioxane_reflux		67
		dioxane, rettux		
	т к. ₽+		K p4	
	R^1 R^2 R^3	R⁴	ĸ	
	H H OMe	Н	(≥53)	
	H OCH <u>2</u> O	н	(≥60)	
	OMe OMe H	Н	(280)	
	H OMe OMe	H	(257)	
	OMe H OMe	Н	(≥60)	
	OMe H H	OMe	(≥79)	
	H OMe OMe	OMe	(≥59)	
	H OMe OTBDMS	OMe	(≥55)	
Br		Pd(CH3CN)2Cl2 (1%).		
	Bu ₃ Sn	P(2-furyl) ₃ (2%),	(99)	356
 CO₂Me		NMP, 80°, 24 h	 CO ₂ Me	
-		$Pd(CH_{3}CN)_{2}Cl_{2}(1\%),$	- Ph	
	Bu ₃ SnPh	P(2-furyl)3 (2%),	(65)	356
		HMPA, 80°, 24 h	CO ₂ Me	
		$Pd(CH_3CN)_2Cl_2(1\%),$	MeOrC	
	Bu ₃ SnC≡CPh	P(2-furyl)3 (2%),	(88)	356
		PhMe, 80°, 24 h	C, CPh	
OMs O	Bu Sn	Dd(DDb.). (5%) LiPr	0	173
OMe	Bu35ii N	THF, reflux, 3 6h	OMe	175
O OPr-i		BnPd(PPh₃))Cl (5%).	i-PrO .O	
	Bu ₃ SnPh	Cul (5%), CH ₃ CN.	(87)	63
		70°, 20 h	Ph	
	Bu₃SnC≡CBu- <i>n</i>	$BnPd(PPh_3)_2CI(5\%),$	i-PrOO	
		Cul (5%). CH3CN.	(58)	63
		70°, 10 h	C O	
			n -Bu $\mathbf{C}^{\prime\prime}$	
	BusSn A	BnPd(PPh ₃) ₂ Cl (5%).	i-PrO O	
		Cul (5%), CH3CN.	(76)	63
		70°, 20 h	0	
	Bu ₃ Sn, O		i-PrO O	
		BnPd(PPh3)2Cl (5%),	0=	64
	R ¹ ~NO	CuI (5%), CH ₃ CN. 50°) Ц Ц	
	R^2		$O = \frac{N}{R^{1}} R^{2}$	
	<u>R¹</u> R ²	Time (h)		
	н н	4	(50)	
	H Me	3	(47)	
	H <i>i</i> -Pr	3	(91)	
	(CH ₂) ₅	4	(60)	
			<i>i</i> -PrO O	
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (5%), Cul (5%) CH ₂ CN		64
		50°, 4 h		U7
	1-mu U	BnPd(PPb_)_CL(5C)	O i-PrO	
	OEt	CuI (5%), CH ₃ CN,	<i>i</i> -PrO (70)	63
	Bu ₃ Sn	70°. 20 h		
			OEt	

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnOTHP	BnPd(PPh_3)_2Cl (5%), i -PrO (49) Cul (5%). CH_3CN, $ $ 0	63
	Bu₃SnCΞCTMS	$\begin{array}{c} \text{THPO} \\ \text{BnPd}(\text{PPh}_{3})_{2}\text{Cl}(5\%), & i\text{-PrO} \\ \text{Cul}(5\%), \text{CH}_{3}\text{CN}, \\ 70^{\circ}, 10 \text{ h} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & &$	63
	Bu ₃ SnO	BnPd(PPh ₃) ₂ Cl (5%), Cul (5%). CH ₃ CN, 70°, 24 h Cl i -PrO O	63
	Bu ₃ SnSPh	Cl BnPd(PPh ₃) ₂ Cl (5%), <i>i</i> -PrO Cul (5%), CH ₃ CN, 70°, 3 h PhS O (87)	63
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, rt, 12 h AcO (80)	61
	BujSn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%), NMP. 80°. 1 h AcO (76)	61
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, 50°, 18 h AcO	61
Br	Bu ₃ SnC≡CR	Pd ₂ (dba) ₃ (2.5%). P(2-furyl) ₃ (10%), THF, rt $C \approx CR$ R = Ph (64)	65, 66
	$Bu_3SnC\equiv CSnBu_3$	Pd ₂ (dba) ₃ (2.5%), PPh ₃ (10%), THF, rt, 24 h (45)	65, 66
	$Bu_3SnC \equiv CSnBu_3$	Pd ₂ (dba) ₃ (2.5%), P(2-furyl) ₃ (10%), " (55) THF, rt, 3 h	65, 66
	$Bu_3SnC\equiv CSnBu_3$	Pd ₂ (dba) ₃ (2.5%). AsPh ₃ (10%). THF, " (45) rt. 1 h	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%). PPh ₃ (10%), THF. rt, 24 h (45)	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%), P(2-furyl) ₃ (10%), " (60) THF, rt, 5 h	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%). AsPh ₃ (10%), THF, " (40) rt, 2 h	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%), PPh ₃ (10%), THF, rt. 48 h (0)	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%). P(2-furyl) ₃ (10%), " (23) THF, rt, 48 h	65, 66
	Bu ₃ Sn SnBu ₃	Pd ₂ (dba) ₃ (2.5%). AsPh ₃ (10%), THF, " (30) rt, 24 h	65. 66

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn NHAc	Pd(CH3CN)2Cl2 (5%), THF, 65°	I (91)	375
	Bu ₃ Sn COPh	{(η ³ -C ₃ H ₅)PdCl <u>}</u> 2, HMPA, 60°, 6 h	Ph COPh (82)	287, 432
	Bu,Sn O	[(η ³ -C ₃ H ₅)PdCl] ₂ , HMPA, DMF, rt, 24 h	Ph HO (76)	287, 432
	Bu ₃ Sn O	[(η ³ -C ₃ H ₅)PdCl] ₂ , HMPA, rt, 1 h	Ph (69)	287, 432
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe, 100-120°	Ph NEt ₂ (50)	316
	(Et ₃ Sn) ₂ S	PhPd(PPh ₃) ₂ I (5%), DMSO, 100°	Ph Ph (99)	320
	$(Bu_3Sn)_2S$	Pd(PPh ₃) ₄ (1%), PhMe, 120°	" (77)	318
Ph	Bu ₃ Sn	 Pd(PPh₃)₂Cl₂ (1%), PhMe, 80°, 20 h HCl (5%) 	Ph (73) O	269
	Bu ₃ Sn	$Pd(PPh_{3})_{2}Cl_{2}(1\%)$	$\begin{array}{c} Ph \\ \hline \\ O \end{array} \qquad (95) Z:E = 1:1 \end{array}$	426
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (0.66%), PhMe, 100-120°	Ph NEt2 (43)	316
Ph	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 6 min	Ph (85)	46
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (4%). DMF, 60°, 1 h	Ph (71)	287
	Bu ₃ Sn NHBoc	Pd(CH ₃ CN) ₂ Cl ₂ (5%). DMF, rt	Ph NHBoc (89)	465
	Bu ₃ Sn NHFMOC	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, 20°, 24 h	Ph NHFMOC (65)	466
	$Me_3SnC\equiv CTMS$	Pd(PPh ₃) ₄ (5%), THF, 50°	Ph C ^S CTMS	431
	Bu ₃ Sn N	Pd(PPh ₃) ₄ (5%). PhMe, reflux	$Ph \longrightarrow N \longrightarrow (82)$	437
	R ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	Ph $R = Bu (77)$ R = Ph (71) + Ph (17)	437 'h
	$Me_3Sn \xrightarrow{Ph} E:Z = 93:7$	Pd(CH ₃ CN) ₂ Cl ₂ (1-2%), DMF, 25°, 6 min	Ph Ph (71) <i>E.E.Z</i> = 6:1+ Ph (14)	46, 187
	Bu ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 10 min	Ph Ph (69)	187, 46
	Bu ₃ Sn SiPh ₃	$Pd(CH_3CN)_2Cl_2$, CH_2Cl_2 , rt	Ph SiPh ₃ (60)	467
Ph I-Ph+BF4-	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF. rt, 5 min	Ph (79)	187
P	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF. rt. 5 h	Ph (72)	187
Br Ph	Bu ₃ Sn	Pd(OAc) ₂ (5%), P(o-Tol) ₃ (10%), NEt ₃ , CH ₃ CN, reflux, 2 h	(>38) O Ph	429

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ SnSnMe ₃	Pd ₂ (dba) ₃ (1%), PPh ₃ (8%), NMP, rt, 40 min	$\frac{Me_3Sn}{O} - NO_2 (72)$	260
$0_2N \rightarrow S_{ij}^{II} \rightarrow CI_{ij}^{II}$	Me ₃ SnSnMe ₃	Pd ₂ (dba) ₃ (1%). PPh ₃ (8%), NMP, rt, 85 min	$ \underset{O}{\overset{Me,Sn}{\underbrace{\longrightarrow}}} \underbrace{\underset{O}{\overset{H}{\longrightarrow}}}_{O} \underbrace{\underset{O}{\overset{H}{\longrightarrow}}}_{NO_2} (47) $	260
Br	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1%), P(2-furyl) ₃ , PhMe, 80°	(8) OEt	356
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (1%), Et ₄ NCl, HMPA, 80°	Ph (55)	356
O	Bu ₃ Sn C, CTMS	Pd ₂ (dba) ₃ (3%), AsPh ₃ (6%), NMP, 35-40°	$\bigcirc CTMS (80) E:Z = 80:20$	278
O Br OEt	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°, 1 h	SEM OEI	289
OMS O	Me ₃ Sn	Pd(PPh ₃) ₄ (10%), LiBr, THF, reflux, 36 h	(73)	173
	Bu ₃ Sn	ч	" (69)	173
	Bu ₃ Sn		O I (24) $E:Z = 93:7$	173
	Bu ₃ Sn	u	I (69) + (3) + (28)) 173
	Bu ₄ Sn	Pd(PPh ₃) ₄	()	173
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (5%), LiBr, THF, reflux, 36 h	(33)	173
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), LiBr, THF, reflux, 36 h	O $R = Bu \cdot n (79)$ R = Ph (57)	173
OTf	Bu ₃ SnCO ₂ Et	Pd(PPh ₃) ₄ (1.25%), CsF. THF, reflux, 6 h	CO ₂ Et (58)	468, 4
	Me ₃ SnSnMe ₃	Pd2(dba)3 (1%), PPh3 (8%), NMP, rt, 4 h	$Me_{3}Sn \underbrace{S}_{II} Ph (78)$	260
o x	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), THF	$ \begin{array}{c} O \\ V \\ V \\ V \\ $	452
~	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%). LiCl, THF	X = OTf (85)	452
CO ₂ Et OTf	Bu ₃ Sn	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 55° 6 h	(61)	436

TABLE I. DIRECT CROSS-COUPLING OF ALKENY	_ ELECTROPHILES (Continued)
--	-----------------------------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO ₂ C OH OTf	Bu ₃ Sn	Pd(PPh3)4 (1%), LiCl, THF, reflux, 6 h	MeO ₂ C, OH (86)	470
MeO O I OMe	Bu ₃ Sn O-N	Pd(PPh ₃) ₄ (10%). Cul (5%). dioxane. 101°	OMe OMe OMe OMe OMe OMe OMe OMe OMe	471
	"	Pd(PPh ₃) ₄ (10%). dioxane, 101°	MeO HO OMe OMe OMe (80)	471
Br TMS	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1%), P(2-furyl) ₃ (2%), PhMe, 80°, 24 h	TMS (40)	356
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (1%), Et ₄ NCl, HMPA, 80°, 24 h	Ph (52)	356
	Bu₃SnC≡CPh	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, 80°, 24 h	C ^{CPh} (26) C TMS	356
C ₂ OTr	Bu ₃ SnC ₆ H ₄ Cl-p	Pd ₂ (dba) ₃ (2%), NMP, 24°	C ₆ H ₄ Cl- <i>p</i> (68)	30
Off	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (1.8%), LiCl. Li ₂ CO ₃ , THF, 60°, 4 h	SnMe ₃ (80)	176
OTI	Bu ₃ Sn	Pd ₂ (dba) ₃ (2%), NMP, 24°	(60)	30, 448
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (8%), LiCl, Li ₂ CO ₃ , THF, 60°, 240 h	SnMe ₃ (39)	176
Br Bu-n	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1%), P(2-furyl) ₃ (2%), HMPA, 80°, 24 h	Bu- <i>n</i> (35)	356
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (1%), Et ₄ NCl, HMPA, 80°, 24 h	Ph Bu-n (52)	356
	Bu₃SnC≡CPh	Pd(CH ₃ CN) ₂ Cl ₂ (1%). HMPA, 80°, 24 h	c'' (0)	356
OTf n-Pr	Ph₃SnF₂ ⁺ Bu₄N*	Pd(PPh ₃) ₄ , THF, reflux, 30 min	Ph $n-Bu$ (83)	283
CHO Ph I Br	HSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂	Ph Br ()	472
EtO ₂ C	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , or Pd(AsPh ₃) ₄ , DMF	(0) NHAc	473
	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 90°, 2 h	NHAc (23)	473
	Bu ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 90°, 1 h	CO ₂ Et (86) NHAc IMS	473

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 90°, 1 h	CO_2Et (56) Ph NHAc	473
	Me ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 80°, 1 h	CO ₂ Et (0) NHAC	473
I CO ₂ Et NHAc	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 40°, 18 h	$\begin{array}{c} & & \\$	473
	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 80°, 4 h	VIIAc (41)	473
	Bu ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 80°, 4 h	TMS CO ₂ Et (23) NHAc	473
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 15°, 15 h	Ph CO ₂ Et (31) NHAc CO E	473
~ ~	Me ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ , DMF 40°, 17 h	Ph CO ₂ Et (21) NHAc	473
Ph' OH Br O	Bu_3Sn $Z:E = 86:14$	Pd(CH ₃ CN) ₂ Cl ₂ , CuI, DMF or PhMe, 100° to reflux	Ph (19-21)	385
OMs	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), LiBr, THF, reflux, 48 h	(51) CO ₂ Et	474
ОН ОТГ	CO ₂ Et Bu ₃ Sn NHAc	Pd2(dba)3 (5%), AsPh3 (40%), THF, 65'	HO NHAc (44)	375
n-C ₅ H ₁₁ COMe	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10% NMP, 45°, 19 h	$(f), r-C_5H_{11}$ (57)	446
	Me ₃ SnPh	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10% NMP, 55°, 4.5 h	$(h)_{\mu} - C_5 H_{11}$ (84)	446
O S Br p-Tol	Bu ₃ Sn	Pd2(dba)3•CHCl3 (2%), PPh3 (8%), THF, reflux, 30 min	O S (87) p-Tol	59
	Bu ₃ Sn	"	O S (80) p-Tol	59
	Bu ₃ Sn Ph	"	Ph (87)	59
	Bu ₃ Sn OEt	u	O S OEt (85)	59
	Bu ₃ Sn	v	$O_{s} \xrightarrow{P-Tol} S \xrightarrow{(83)}$	59
Ossil p-Tol	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt	O S (83) p-Tol OEt	59
	Bu ₃ Sn	н	Osyp-Tol (90)	59
O►S I	Bu ₃ Sn	n	O►S (91)	59
	Bu ₃ Sn		O = S (80) (80)	59
	Bu ₃ Sn	"	$O-S \qquad (81)$ $p-Tol$	59

-	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		OEt Bu ₃ Sn	n	O-S (83) <i>p</i> -Tol OEt	59
		Bu₃SnC≡CBu-n	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF/THF, rt	$O \leftarrow S \qquad C \qquad (77)$ $p - Tol \qquad CBu - n$	60
		$Bu_3SnC \equiv CCH(OEt)_2$	$Pd(CH_3CN)_2Cl_2(2\%),$ DMF, rt	O-S C (82) $p-Tol C (82)$	60
		OEt Bu ₃ Sn OEt	"	OFS P-Tol OEt (76)	59
		$Bu_3SnC \equiv CSiEt_3$	11	O = S = C = C = C = C = C = C = C = C = C	60
		Bu ₃ SnC≡C− OTBDMS	11	O = S = C $p-Tol = C $ $OTBDMS $ (75)	60
106		$Bu_3SnC \equiv C$	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF/THF, rt	$O \leftarrow s \underbrace{C}_{p-\text{Tol}} C \underbrace{OBu-t}_{C} (74)$	60
	OTf CO ₂ Et	Bu ₃ Sn	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 55°, 4 h	(81) (81)	436
		Bu ₃ Sn	Pd(OAc) ₂ (7%). PPh ₃ (14%), THF, 55°, 6 h	(66) CO ₂ Et	436
		Bu ₃ SnPh	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 55°	(0) CO ₂ Et	436
		Bu ₃ SnC≡CPh	Pd(PPh ₃) ₄ (7%), THF, 55°	CO ₂ Et (89)	436
		Bu ₃ Sn EtO ₂ C	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 65°	CO_2Et (72)	259
	$n-C_5H_{11}$ CO ₂ Me	Me₄Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) DMF, 80°, 24 h	$\frac{\text{EtO}_2\text{C}}{n\text{-}\text{C}_3\text{H}_{11}}$	435
	I	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) DMF, 20°, 3 h	$n-C_{3}H_{11}$). CO ₂ Me (69)	435
		Bu ₃ Sn OAc	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) DMF, 20°, 64.5 h	$n-C_{5}H_{11}$	435
107	n-Bu	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%) DMF, 20°, 2.5 h	EtO_2C $n-Bu$ (83)	435
	I	OEt Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) DMF, 20-40°	$h_{n-\mathbf{Bu}} \xrightarrow{\text{EtO}_2 \mathbf{C}} \xrightarrow{\text{OEt}} (47)$	435
	n-Bu CO ₂ Et	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) DMF, 20°, 23 h	$n-Bu \xrightarrow{\text{CO}_2\text{Et}} (80)$	435
	EtO ₂ C OTf Bu-n	Bu ₃ Sn N SEM	Pd(PPh3)4 (2%), LiCl, THF, reflux, 22 h	$EtO_2C \xrightarrow{N}_{Bu-n} Bu-n $ (74)	433
	F ₃ C-	Me ₃ SnSnMe ₃	Pd2(dba)3 (1%), PPh3 (8%), NMP, rt, 4 h	$\overset{\text{Me}_3\text{Sn}}{} \overset{\text{Sn}}{} \overset{\text{CF}_3}{} (84)$	260
	$F_{3}C \rightarrow \bigcirc \\ G \rightarrow \bigcirc \\ G \rightarrow \bigcirc \\ G \rightarrow \bigcirc \\ C \land \\ C \: \\ C \: C \: \\ C \: \\$	u	u,	$ \underset{O}{\overset{We_3Sn}{\qquad \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	260

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

ADEL I. DIRECT CROSS-COULTING OF AERENTE ELECTROPHILES (Commune)	TABLE I. DIRECT	CROSS-COUPLING OF	ALKENYL ELECTROPHILES (C	Continued)
--	-----------------	--------------------------	--------------------------	------------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ (40%), Cul (10%) DMF, 60°, 1 h	OMe (74)	291
Bu	Me ₃ Sn	Pd(PPh ₃) ₄ (1-2%), DMF, 25°, 6.5 h	Ts (80)	46
OTf	Bu ₃ SnH	Pd(PPh3)4 (1.6%), LiCl, THF, reflux, 0.5 h	(78)	444
-	Bu ₃ Sn	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 17 h	(91)	28, 444
	Bu ₃ Sn	Pd ₂ (dba) ₃ , (1%), P(2-furyl) ₃ , (8%), NMP, 35°	т-Би " (>95)	11
	BujSn	Pd ₂ (dba) ₃ (1%), LiCl, AsPh ₃ (8%), NMP, 35°	" (>95)	11
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 31 h	(96)	28, 444
	Bu ₄ Sn	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 41 h	Bu-n (80)	28, 444
	OEt		OEt	
	Me ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 60°, 18 h	(93)	270
	u	Pd(PPh ₃) ₄ (2%), LiCl, THF, reflux, 15 h	" (97)	480
	Me₃SnC≡CTMS	Pd(PPh ₃) ₄ (2%), LiCl,	C [≥] CTMS (90)	28. 444
		THF, reflux, 15 h	r-Bu Ph	• •
	Me ₃ SnPh	Pd(PPh ₃) ₄ (1.6%), LiCl. THF, reflux, 24 h	r-Bu (tr)	28
	Me ₃ Sn Ph	Pd(PPh ₃) ₄ (1.6%), LiCl, THF, reflux, 24 h	<i>r</i> -Bu Ph (tr)	28
	Bu ₃ Sn CF ₃	Pd2(dba)3 (1%). AsPh3 (8%). ZnCl2, NMP, rt	(89)	30, 448
	v	Pd2(dba)3 (1%). AsPh3 (8%). LiCl. NMP 60°	′′-Ви С	30, 448
		$Pd_2(dba)_3 (1\%),$ AsPh ₃ (8%), NMP, 60°	" (83)	30, 448
	u	Pd ₂ (dba) ₃ (1%), PPh ₃ (8%), LiCl, NMP, 60°	" (54)	30, 448
	17	Pd ₂ (dba) ₃ (1%), LiCl, NMP, 60°	" (69)	30, 448
	Bu ₃ Sn OMe	Pd ₂ (dba) ₃ (1%), AsPh ₃ (8%), NMP, rt	(89)	30. 448
			120 0	

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continue

OTf	Bu3Sn	Pd(PPha), LiCl	× (10)	
/ \		THF	(09)	488
<i>E:Z</i> = 82:18	- ^I Bu ₃ Sn NHFMOC	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, 20°, 24 h	(65) E:Z = 85:15	466
n-C ₈ H ₁₇	Bu₃SnC≡CBu-n	Pd(PPh ₃) ₂ Cl ₂ , DIBAL, THF, rt	<i>n</i> -C ₈ H ₁₇ (88)	442
	Me₄Sn	BnPd(PPh ₃) ₂ Cl, dioxane, reflux		43
BocHN CO ₂ Me	Bu ₃ Sn	Pd(PPh ₃) ₄ , PhMe	BocHN CO ₂ Me (63)	489, 49
Eto J TRDMS	Bu ₃ SnC≡CBu- <i>n</i>	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 50°	EtO TBDMS (97)	49
Ph CO ₂ Et Br	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%), NMP, 20°, 29.5-46 h	Ph CO_2Et (85)	435
Ph CO ₂ Et	Me ₄ Sn	Pd(PhCN) ₂ Cl ₂ (5%). AsPh ₃ (10%), Cul (10% NMP, 80°, 16 h	$\stackrel{\text{Ph}}{\longrightarrow} \text{CO}_2\text{Et} \qquad (91)$	435
	Buisn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%) NMP, 20°, 2.5 h	Ph (CO ₂ Et (84)	435
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10% NMP, 80°, 168 h	CO_2Et ()	435
	Me ₃ Sn CO ₂ Et	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10% NMP, 20°, 48 h	Ph). CO_2Et (30) EtO_2C	435
	Bu ₃ SnPh	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10% NMP, 50°, 14 h	Ph CO_2Et (52)	435
	Me ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10% NMP, 20°, 23 h	$\stackrel{\text{FII}}{}_{\text{Ph}} \stackrel{\text{FII}}{}_{C_6H_{13}-n} (84)$	435
OTf CO ₂ Bn	Bu ₃ Sn	Pd(OAc) ₂ (7%). PPh ₃ (14%), THF. 55°, 4.5 h	CO2Bn (78)	436
	Bu ₃ Sn CO ₂ Me	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 65°, 1.5 h	CO ₂ Bn CO ₂ Bn	259
	Bu ₃ Sn		CO ₂ Bn (8)	259

TABLE I. DIRECT CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Br CO ₂ M	e Bu ₃ Sn <u>C₈H₁₇-n</u> OTHP	Pd(PPh3)4, PhMe, 100°	oTHP n-C ₈ H ₁₇ (54)	500
) TTO	Bu3Sn	Pd(PPh ₃) ₄ , LiCl, THF, reflux, 20 h	(82)	501
	Me ₄ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%), NMP, 80°, 19 h	n-C ₃ H ₁₁ (70)	446
	Bu3Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cul (10%), NMP, 45°, 20 h	n-C ₅ H ₁₁ (79)	446
$n-C_{5}H_{11}$	ł Me ₄ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), Cut (10%), NMP, 80°, 68 h	n-C ₅ H ₁₁ (63)	446
	Buisn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 48 h	(>53)	502
TBDMSO	Bu3Sn	Pd(PPh3)4 (3%), LiCl, THF, reflux, 18 h	OTBDMS (88)	476
TBDMSO	Bu;Sn	Pd(PPh ₃)4, LiCl, THF, reflux	TBDMSO (89)	452
O O O O Tf	Bu ₃ Sn	Pd(PPh3)4, LiCl, THF, retlux	0 	503
O (CH ₂) _b CO ₂ Et	Bu ₃ Sn C ₃ H ₁₁ -n OH	BnPd(PPh ₃) ₂ Cl, THF, 55-60°	$C_{S}H_{11} \cdot n$	53, 52
O (CH ₂) ₆ CO ₂ Et	$\frac{Bu_{3}Sn}{\overset{C_{5}H_{11}-n}{OH}}$	Pd(PPh ₃) ₄ (3%). LiCl, THF, 60°, 48 h	$C_{5}H_{11}-n$	53
TBDMSO	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuJ (10% DMF, 20°, 3 h	CO ₂ Et TBDMSO	435
O H I OMe OBu-1	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , DMF, 23-24°, 18 h	O H O OMe (71-78) OBu-1	486
Ph SO ₂ Ph	Bu ₃ Sn CO ₂ Me	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 65°	CO_2Me (68) SO_2Ph	259

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ Sn OPMB	Pd(PPh ₃) ₄ (2-5%), HMPA, 60°, 8 h	I (34) + II (40)	441
		Bu ₃ Sn OPMB	Pd(PPh ₃) ₄ (2-5%), HMPA, 20°, 72 h	I (67) + II (15)	441
		u ₃ Sn CO ₂ Me OTBDPS	Pd(OAc) ₂ (7%), PPh ₃ (14%), THF, 70°	Et ₃ SiO O CO ₂ Me (66)	506
		Bu ₃ SnR	Pd(PhCN) ₂ Cl ₂ (5%), AsPh ₃ (10%), CuI (10%), NMP, rt, 16 h	$ \begin{array}{c} $	61
130	C ₁₆ EtO ₂ C	Bu ₃ SnTMS	Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 110°, 1.5 h	CO ₂ Et (70)	417
	EtO ₂ C Br OTf	Bu ₃ SnTMS	Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 110°, sieves, 8 h	$(41) + \underbrace{EtO_2C}_{Br} (13)$	417
	CO ₂ Et	Me₄Sn	Pd(AsPh ₃) ₄ , Cul, NMP, 100°	(56) CO ₂ Et	177
		Bu₃SnC≡CH	Pd(AsPh3)4, Cul, NMP, rt	CO ₂ Et (33)	177
		Et₄Sn	Pd(AsPh ₃) ₄ , CuI, NMP, 100°	(77) CO ₂ Et	177
		Bu ₃ Sn	Pd(PPh ₃) ₄ , THF, reflux	$(51) E:Z = 1:1$ CO_2Et	177
131		Bu ₃ Sn	Pd(AsPh ₃) ₄ , CuI, NMP, rt	(69) $Z:E = 16:1$	177
		Bu ₃ SnPh	Pd(AsPh3)4, CuI, NMP, 100°	(61) CO ₂ Et	177
	I (CH ₂)gOTHP	Me ₃ SnC≡CPr- <i>n</i>	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 25°	$n-\PrC_{\mathcal{S}C}$ (86) (CH ₂) ₉ OTHP	47
		Me ₃ Sn O I	Pd(PPh ₃) ₄ , DMF, rt, 16 h	O O O O O O O O O O O O O O O O O O O	455

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C,	SnMe ₃	Pd(PPh ₃) ₄ (5%), DMF, 80°, I h	(70-95)	68
C ₁₀	EIO_2C Br SnMc ₃ EiO_2C Br	Pd(PPh ₃)₄ (5%), DMF, 80°, 1 h	(70-95)	68
	SnMe ₃ CO-Et	Pd(PPh ₃) ₄ (5%), DMF, 80°, 1 h	(70-95) CO ₂ Et	68
C ₁₁	SnMe ₃ MOMO	Pd(PPh3)4 (10%), DMF, Et3N, 80°		68
	SnMe ₃ Br MOMO CO ₂ Et	Pd(PPh3)4 (10%), DMF, Et3N, 80°	(68) CO ₂ Et	68
	Br SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 20 h	омом (66)	526
C ₁₂	MeO ₂ C CO ₂ Me OTf SnMe ₃	Pd(PPh ₃) ₄ , THF	(55)	181
	BujSn O OTF	Pd(PPh3)4 (2%), LiCl. THF, reflux	0 (57) 0	185
	i-Pr CO ₂ E1	Pd(PPh ₃) ₄ . DMF	() CO ₂ Et	524
	<i>i</i> -Pr	Pd(PPh3)4, DMF	$\Pr_{i} = \Pr_{CO_2Et} (-)$	524
	OTf SnMe ₃ CO ₂ Me	Pd(PPh3)4 (5%), THF or CH3CN, reflux, 11 h	(82-85) CO ₂ Me	31, 181
C ₁₃	Br OTF + Bu ₃ SnTMS	Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 110°	(38) + (38) + (4)	3) 417
		Pd(PPh3)4 (2%), LiCl, THF, reflux	O (56)	185
	OTF CO ₂ Me	Pd(PPh ₃) ₄ (5%), THF, reflux, 9 h	(82-85)	31, 181

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\overbrace{CO_2Me}^{OTr} \xrightarrow{Pr-i}_{SnMe_3}$	Pd(PPh ₃) ₄ (5%), CH ₃ CN, reflux	(84)	182, 184
	CO ₂ Me SnMe ₃	Pd(PPh ₃) ₄ (5%), THF, reflux, 23 h	(50)	181
	CO ₂ Me SnMe ₃	Pd(PPh ₃)4 (5%), THF, reflux, 3 h	(90)	31, 181
	MOMO EtO ₂ C Br	Pd(PPh ₃) ₄ (5%), DMF, 80°, 1 h	MOMO (70-95)	68
C	MOMO CO ₂ Et	Pd(PPh ₃)₄ (5%), DMF, 80°, I h	(70-95) CO ₂ Et OMOM	68
Cj.	4 O Br OTf + Bu ₃ SnTMS	Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 110°, 2 h	(50)	417
	Bu ₃ Sn O Tro	Pd(PPh ₃) ₄ (2%), LiCl, THF, reflux	0 (57) 0 (57)	185
	SnMe ₃ Pr- <i>i</i>	Pd(PPh ₃) ₄ (5%), CH ₃ CN, reflux	(85) Pr- <i>i</i>	182
	MeO ₂ C SnMe ₃	Pd(OAc) ₂ (5%), PPh ₃ (10%), Et ₃ N, CH ₃ CN, reflux, 2.5-4 h	MeO ₂ C (55)	69
	MeO ₂ C Me ₃ Sn Pr- <i>i</i>	Pd(PPh ₃) ₄ (5%). CH ₃ CN, reflux	(83)	182, 184
	CO ₂ Me SnMe ₃	Pd(PPh ₃) ₄ (5%), THF, reflux, 19 h	(85-86)	31, 181
0	OTf CO ₂ Me SnMe ₃	Pd(PPh ₃) ₄ (5%), THF, reflux, 3 h	(85) CO ₂ Me	31, 181
Cl	Bu ₃ Sn O OTf O	Pd(PPh ₃) ₄ (2%), LiCl, THF, reflux	(56)	185
	SnMe ₃ CO ₂ Et	Pd(PPh ₃) ₄ , DMF	CO ₂ Et ()	527

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
SnMc ₃ CO ₂ Ei	Pd(PPh3)4, DMF	()	527
MeO.C	Pd(OAc) ₂ (5%), PPh3 (10%), Et3N, CH3CN, reflux, 2.5-4 h	(>80)	ርሃ
SnMe ₃ OTr CO ₂ Me SnMe ₃	Pd(PPh3)4 (5%), CH3CN, reflux	i-Pr (81) CO ₂ Me	182, 184
OTF SnMc	Pd(PPh ₃) ₄ (5%), THF, ²³ rt, 15 min		31, 181
$\begin{array}{c} C_{16} \\ \hline \\ Br \\ OTf \end{array} + Bu_3SnT$	ГМS Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 110°, 1.5 h	CO2Et (70)	417
Br OTř + Bu ₃ SnT	FMS Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₃ NBr, Li ₂ CO ₃ , PhMe, 110°, sieves, 8 h	(1)	3) 417
O OTf SnMe	Pd(PPh ₃) ₄ (5%), THF, e ₃ rt, 15 min		31, 181
O OTI Sn	Pd(PPh₃)₄ (5%), THF, nMe₃ π, 15 min	(84)	31, 181
MeO ₂ C SnMe ₃	Pd(OAc) ₂ (5%), PPh ₃ (10%), Et ₃ N, CH ₃ CN, reflux, 2.5-4 h	(>80)	69
C_{17} CO_2E_1 Br TfO + Bu ₃ S	nSiMe ₃ Pd(PPh ₃) ₂ Cl ₂ (3%), Bu ₄ NBr, Li ₂ CO ₃ , PhMe, 100°, 3.5 h	(43)	417
O OTT	Pd(PPh ₃) ₄ (5%), THF, 1Mc ₃ reflux, 15 min	(86)	31, 181
C ₁₈ TBDMSO EtO ₂ C E	Pd(PPh ₃) ₄ (5%), DMF, 80°. I h Br	TBDMS0 (70-95)	68
TBDMSO CO ₂ Et Br	Pd(PPh ₃) ₄ (5%), DMF, 80°, 1 h	(70-95) CO ₂ Et OTBDMS	68
O SnMe3 O Pr- <i>i</i>	Pd(PPh ₃) ₄ , 30°, 5 min	$\begin{array}{c} & & \\$	182, 184

TABLE II. INTRAMOLECULAR CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

 TABLE II. INTRAMOLECULAR CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₆ PhBr	Me ₄ Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	PhMe (89)	19
	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	Ph OH (60)	233
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), m-xylene, 120°, 3 h	Ph CN (72)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	Ph OMe (76)	234
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	Ph (96)	3, 29
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 100°, 20 h	$Ph \qquad (19) + PhSnBu3 (15)$	529
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	Ph (78)	237, 238, 240
	Bu ₃ Sn O ^N	Pd(PPh ₃) ₂ Cl ₂ (5%), dioxane, reflux, 25 h	$Ph O'^{N}$ (72)	292, 530
	Bu ₃ Sn N	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	Me (89) Ph N (89)	531
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (4%), DMF, 70°, 1.5 h	Ph (67)	287
	OSnBu ₃	Pd{P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	0 (67) Ph (67)	238, 240

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES

Substrate Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
OSnBu;	Pd[P(o-Toi)3]2Cl2 (1%), PhMc, 100°, 5 h	Ph (60)	238, 240
Bu ₃ SnOMe	BnPd(PPh ₃₎₂ Cl, C ₆ H ₆ , 100°, 20 h	Ph OMe (81)	305, 532
Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, 105°, 48 h	Ph OE: (71)	270
Bu ₃ Sn OEt	1. Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 20 h 2. H ⁺	Ph (80)	269
Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (10%), Et ₄ NCl, DMF, 80°, 2 h	Ph OEt (78)	272, 273
Bu ₃ Sn CO ₂ Et	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (1%), ZnBr <u>2</u> , DMF, 80°, 5 h	Ph CO_2Et (71)	236
Bu ₃ Sn CO ₂ Me	[(η ³ -C ₃ H ₅)PdOAc] ₂ (5%) DIOP (10%), TIOAc, THF, reflux, 20 h	Ph CO_2Me (72) (5) 40% ee	533
Bu ₃ Sn CO ₂ Me	[(η ³ -C ₃ H ₅)PdOAc] ₂ (5%) BPPM (10%), TlOAc, THF, 40°, 6 h	Ph CO_2Mc (36) (<i>R</i>) 42% ee	533
Bu ₃ Sn N	Pd(dppb)Cl ₂ , CuO, DMF, 100°, 80-90 min	Ph N (82)	96
Bu ₃ Sn N	$Pd(PPh_3)_2Cl_2(1\%)$	Ph (70)	426
Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	Ph OEt (83) $E:Z = 95:5$	534
OSnBu ₃	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (3%), C ₆ H ₆ , reflux, 7 h	Ph (0)	241
$\begin{bmatrix} OSnBu_3\\ Pr-i \end{bmatrix}$	Pd[P(0-Tol)3]2Cl2 (1%), PhMe, 100°, 5 h	$Ph \underbrace{\bigvee}_{Pr-i}^{O} (87)$	238, 240
OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	Ph (33)	238, 240
Me ₃ Sn OTMS	Pd(PPh ₃) ₄ , PhMe, 100°	Ph OTMS (74)	457
Bu₃SnPh	D ₇₁₇ -Pd(0) (polymer-supported), Me ₂ CO, reflux, 25 h	Ph-Ph (43)	535
Ph₄Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	Ph-Ph (78)	19
Bu ₃ Sn N	Pd(PPh3)4 (5%), THF, 65°, 4 h	Ph N (33)	437
OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	C (54) Ph	238, 240, 241
Bu ₃ Sn	Pd(PPh3)4 (1%). C6H6, 110°, 15 h	Ph OEt (69)	534
	$Pd[P(o-Tol)_3]_2Cl_2 (3\%), C_6H_6, reflux, 3 h$	Ph (56)	241

	· · · · · · · · · · · · · · · · · · ·
TABLE III. DIRECT CROSS-COUPLIN	G OF ARYL ELECTROPHILES (Continued

	INDEE III. DIRECT CROSS C			
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OSnBu ₃ Bu- <i>t</i>	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	Ph (86) Bu- <i>t</i>	238, 240, 241
	OSnBu ₃ Bu-s	Pd[P(o-Tol) ₃] ₂ Cl ₂ (3%), C ₆ H ₆ , reflux, 10 h	O (47) PhBu-s	241
	Me ₃ Sn S	Pd(PPh ₃) ₄ , PhMe, reflux, 5 h	$\stackrel{Ph}{\underset{S}{\overset{S}{{}}}{\overset{S}}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}}{\overset{S}{\overset{S}}{\overset{S}{\overset{S}}{\overset{S}{\overset{S}{\overset{S}{{}}}{\overset{S}{\overset{S}}{\overset{S}{\overset{S}}{\overset{S}}{\overset{S}}{\overset{S}{\overset{S}}}}}}}}}$	536
		BnPd(PPh ₃) ₂ Cl (1-2%), CHCl ₃ , 65°, 1 d	Ph TMS (68)	537
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	Ph $R = o - Me$ (IT) R $R = m - Me$ (75) R = p - Me (73)	538
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	Ph - X = O (75) X = S (56)	531
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	Ph (72) E:Z = 85:15	534
	OSnBu ₃	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (3%). C ₆ H ₆ , reflux, 3 h	Ph (84)	241
	Bu ₃ Sn OMe TMS	Pd(PPh ₃) ₄ , C ₆ H ₆ , 110°	Ph OMe (76) TMS	305, 529
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 21 h	Ph CO_2Et (55) E:Z = 1:4	306, 427
	OSnBu ₃ Ph	Pd[P(o-Tol)3]2Cl2 (1%), PhMe, 100°, 5 h	Ph (90) Ph Ph	238, 240, 241
	$Bu_{3}Sn \underbrace{CH(OEt)_{2}}_{E:Z = 85:15}$	Pd(PPh ₃) ₄ (2%). C ₆ H ₆ , 80°, 20 h	Ph $CH(OEt)_2$ (75) E:Z = 85:15	539
	Bu ₃ Sn TMS	Pd(PPh ₃) ₄ (5%), THF, 66°, 24 h	Ph TMS (63)	422
	Bu ₃ Sn >== NBu- <i>t</i>	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	$\stackrel{\text{Ph}}{\underset{n-\text{Bu}}{\longrightarrow}} N\text{Bu-}t \qquad (0)$	531
	$\begin{bmatrix} OSnBu_3 \\ C_7H_{15}-n \end{bmatrix}$	Pd[P(o -Tol) ₃] ₂ Cl ₂ (3%), C ₆ H ₆ , reflux, 4 h	$Ph \underbrace{C_7 H_{15} - n}^{O} (65)$	241
	Bu ₃ Sn N(TMS) ₂	 Pd(PPh₃)₄ (2%), PhMe, reflux, 72 h H₃O⁺ 	Ph NH ₂ (72)	462, 464, 540
	OSnBu ₃	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ , PhMe, 100°, 4 h	$Ph \underbrace{\bigcirc}_{O} (61) + Ph \underbrace{\bigcirc}_{O} (2)$	541
	Bu ₃ Sn MeO OC Cr CO	Pd(PPh ₃) ₄ , THF. reflux, 4 h	$\begin{array}{c} Ph & \textcircled{\begin{tabular}{c} Ph \\ MeO & \fbox{\begin{tabular}{c} Cr \\ OC & \fbox{\begin{tabular}{c} CO \\ CO \\ \hline CO \end{array}} (0) \\ \end{array} \end{array} $	542
	MeO ₂ C Bu ₃ Sn	Pd(PPh ₃) ₄ , NEt ₃ , CH ₃ CN, 100°, 5 h	McO ₂ C Ph N H H H	290
	Bu ₃ Sn $ Ph$ H	Pd(PPh ₃) ₄ . THF	$Ph \longrightarrow H \longrightarrow H $ (65)	543

TABLE III.	DIRECT	CROSS-	COUPL	ING OF A	ARYL	ELECTROP	HILES (Continue	ed)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn O TBDMS	Pd(PPh3)4 (2%), PhMe, reflux, 1 h	Ph O TBDMS (90)	371
	Bu ₃ Sn O TBDMS	Pd(PPh ₃) ₄ (2%), PhMe, reflux, 18 h	Ph OH (51)	371
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 200 h	Ph TMS (79)	256
	Ph Bu ₃ Sn Ph Ph	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	$ \begin{array}{c} Ph \\ Ph \\ Ph \\ Ph \end{array} $ (0)	531
	$\begin{bmatrix} n-C_3H_{11} \\ Bu_3Sn \\ H \\ H \end{bmatrix}$	Pd(PPh ₃) ₄ , NEt ₃ , CH ₃ CN, 100°, 5 h	$\begin{array}{c} n - C_5 H_{11} \\ Ph - V_{H} \\ N \\ H \end{array} $ (265)	290
	THPO Bu ₃ Sn N H	Pd(PPh ₃) ₄ , NEt ₃ , CH ₃ CN, 100°, 7 h	THPO Ph-(263) H	290
	Bu ₃ Sn	-r Pd(PPh ₃) ₄	Ph (84)	544
	SnBu ₃ Ph Ph N	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, 80°	Ph (26) Ph N ^{-N}	545
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ , PhMe, 100°, 22 h	Ph (49) (49) (49) (49) (3) (3) (3)	541
	Bu ₃ Sn O OTBDMS OTBDMS OTBDMS Bu ₃ Sn O OBn OBn	Pd(PPh ₃) ₄ . THF, reflux Pd(PPh ₃) ₄ (1%). PhMe, 100°, 3 h	$Ph \qquad (6) \\ Ph \qquad (6) \\ HO \qquad OBn \\ OTBDMS \\ OTBDMS \\ OTBDMS \\ Ph \qquad (0) \\ OTBDMS \\ OBn \qquad (88) \\ OBn \\ O$	299, 300 423
	ÓBn Bu ₃ Sn C O	Pd(PPh3)4 (5%), HMPA, 65°, 10 h	['] OBn Ph Ph O O O (54)	287, 546
	$Bu_3Sn-N = \begin{pmatrix} OMe \\ CCl_3 \end{pmatrix}$	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	$P_{h}-N \stackrel{OMe}{=} \begin{pmatrix} 0\\ CCI_{3} \end{pmatrix}$	531
	Bu ₃ Sn-N	Pd[P(o-Tol ₃) ₂]Cl ₂ (1%), PhMe, 100°, 3 h	Ph-N (3)	316
	Bu ₃ SnNHBu-n	-	PhNHBu-# (12)	90; 316
	BU3SNNHBU-/ BU3SNNEI2	*	PhNEt ₂ (81)	90, 316 90, 316
	Bu3Sa ^N	-	Ph N (61)	316

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn-N	Pd[P(o-Tol ₃) ₂]Cl ₂ (1%), PhMe, 100°, 3 h	$Ph \sim N$ (0)	316
			(37)	316
	Bu ₃ Sn ~		Ph ⁻	
	Bu ₃ SnNHPh		$Ph_2NH \qquad (64)$	316
	$\frac{Du_3 S S N(TMS)}{Du_3 S N(TMS)}$	li i	$\mathbf{PhN}(\mathbf{TMS}) = \mathbf{O}$	316
	E+		E+	510
	Bu ₃ Sn-N Ph	u	Ph = N (43) Ph	316
	$Bu_3Sn-N = \langle NEt_2 \\ Ph \rangle$	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	$Ph-N = \begin{pmatrix} NEt_2 & (0) \\ Ph & \end{pmatrix}$	531
	Bu ₃ Sn-N=C=N-SnBu ₃	"	Ph-N=C=N-Ph (0)	531
	Bu ₃ SnSBu-n	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	PhSBu- <i>n</i> (86)	318
	Bu ₃ SnSPh	"	PhSPh (83)	318
	Bu ₃ SnSSnBu ₃	"	PhSPh (75)	318
	Me ₃ SnTMS	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 115°, 15 h	PhTMS ()	547
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	PhSnBu ₃ (79)	547, 548
PhCI	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	Ph (0)	3
	Bu ₃ Sn N	Pd(dppb)Cl ₂ , CuO, DMF, 100°, 24 h	Ph N (tr)	96
	BusSn TMS	Pd(PPh ₃) ₄ (5%), THF, 66°, 24 h		422
PhI	Me ₃ SnCN	Pd(PPh ₃) ₄	PhCN (—)	549
	Bu₃SnC≡CH	Pd2(dba) ₃ (4%), AsPh ₃ (16%), Cul (8%), DMF, 60°, 6 h	PhC≡CH (58)	33
	Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), PPh ₃ (10%), CuI (10%), dioxane, 50°, 72 h	Ph (>95)	33
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (8%), THF, 50°, 72 h	Ph (>95)	H
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%). AsPh ₃ (8%), THF, 50°, 72 h	Ph (>95)	11
	Bu ₃ Sn	Pd(Ph-BIAN) (dimethyl fumarate) (2% DMF, 50°, 16 h	Ph (49)	415
	Mc ₃ SnCF=CF ₂	PhPd(PPh ₃) ₂ I, HMPA or DMF, 50-70°, 3 h	PhCF=CF ₂ (85-87)	265, 266
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), C_6H_6 , 80°	Ph (32)	3
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%). LiCl, DMF, 90°, 30 h	Ph (88)	29

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd <u>2</u> (dba) ₃ (4%), P AsPh3 (16%), Cul (8%), DMF, 60°, 6 h	h (61)	33
	Bu ₃ Sn ^C C	Pd2(dba)3•CHCl3 (3%), P PPh3 (24%), LiCl, DMF, rt	h C (45)	275
	<i>n</i> -Bu₄Sn	Pd ₂ (dba) ₃ (4%), P AsPh ₃ (16%), Cul (8%). DMF, 60°, 6 h	hBu-n (34)	33
	Me ₃ Sn	Р Pd(PPh ₃) ₂ Cl ₂ , THF, 7 h	$ \begin{array}{c} h \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	292
	Me ₃ Sn N	$Pd(PPh_{3})_{4}$ (5%), $C_{6}H_{6}$, reflux, 24 h P	$h \sim N$ (80)	550
	Bu ₃ Sn O ^N	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 7 h P	$h = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}^{N}$ (82)	292, 530
	Bu ₃ Sn N	Pd(PPh ₃) ₂ Cl ₂ (3%), Cl(CH ₂) ₂ Cl, reflux, overnight P	N (43)	458
	Bu ₃ Sn	Pr BnPd(PPh ₃) ₂ Cl (1.5%), CuI, CH ₃ CN, rt, 1 h	(59) O	267
	Bu ₃ Sn O	Pd ₂ (dba) ₃ (4%), AsPh ₃ (16%), CuI (8%), _P DMF, 60°, 6 h	h = 0 (58)	33
		Pd(PPh ₃) ₂ Cl ₂ (4%), DMF, 70°, 2 h	(75)	287
	Bu ₃ SnC≡COEt	Pd(PPh ₃) ₂ Cl ₂ (5%), P Et ₄ NCI, DMF, rt, 1 h	hC≡COEt (60)	302
	Bu ₃ Sn	Pd(PPh3)4 (2%), dioxane, 95°, 96 h	OEt (92)	270
	Bu ₃ Sn	Pd ₂ (dba) ₃ (4%), AsPh ₃ (16%), Cul (8%), P DMF, 60°, 6 h	0Et (71)	33
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1–2%), P PhMe, reflux	² h (65)	261
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1-2%), PhMe, reflux	^{2h} (45)	261
	CO ₂ Me Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), CuI, DMF, rt, 48 h P	CO ₂ Me (87)	246
	CO ₂ Me Bu ₃ Sn	Pd2(dba)3 (3%), AsPh3 (12%), P THF, 50°, 18 h	CO_2Me $+ Ph$ CO_2Me (70) 1:254	245
	$Bu_3Sn \xrightarrow{D}_{D}$	Pd ₂ (dba) ₃ (3%), AsPh ₃ (12%), P THF, 50°, 18 h	$b \\ CO_2Me \\ D $ (70)	245
	Bu ₃ Sn CO ₂ Et	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (1%), P ZnBr ₂ , DMF, 80°, 5 h	$^{\text{CO}_2\text{Et}}$ (31)	236
	Bu ₃ Sn N	Pd(dppb)Cl ₂ , CuO, DMF, 100°, 70-80 min P	h N (64)	96, 33
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (0.5%), THF, reflux, 20 h P	h N (54)	286

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn N	Pd(PPh3)4 (5%), C ₆ H ₆ , reflux, 12 h	$Ph \xrightarrow{O}_{N}$ (100)	550, 551
	Bu ₃ SnC≡CCO ₂ Et	Pd(PPh ₃) ₂ Cl ₂ (1%), Et ₄ NCl, ZnCl ₂ , DMF, 50°, 2 h	$PhC \equiv CCO_2 Et$ (94)	552
	Bu ₃ Sn N	Pd(PPh ₃) ₄ (5%), THF, reflux, 6 h	Ph N (58)	437
	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 8 h	Ph-Ph (86)	553
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux, 40-80 min	Ph N (72)	437
	Me ₃ Sn S S	Pd(PPh3)4, PhMe, reflux, 3h	$\stackrel{Ph}{\swarrow} \underbrace{\searrow}_{S} \overset{S}{\Longrightarrow} \underbrace{\swarrow}_{S} \overset{(67)}{\Longrightarrow}$	536
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 70°, 1 h	Ph (90)	553
	Me ₃ Sn N(Pr- <i>i</i>) ₂	Pd(PPh ₃) ₄ (5%), PhMe, reflux, 40-80 min	$\begin{array}{c} O \\ Ph \end{array} (78) \\ Ph \end{array} N(\Pr-i)_2 \end{array}$	437
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (5%), Cul (7-10%), DMF, rt	Ph 0 (77)	12
	Bu ₃ Sn <i>i</i> -PrO O	BnPd(PPh ₃) ₂ Cl (5%), Cuł (7–10%), DMF, rt	Ph (99) <i>i</i> -PrO 0	12
	Ru.Sn TMS	Pd(PPh ₃) ₄ (5%), THF, 66°, 24 h	(98)	422
	Bu ₃ Sn C Ph	Pd ₂ (dba) ₃ •CHCl ₃ (3%), PPh ₃ (24%), DMF, rt	$Ph \sim C_{\sim} Ph$ (45)	275
	Bu ₃ Sn CO ₂ Et NHAc	Pd(PPh ₃) ₄ (4%), DMF, 100°, 6 h	Ph CO ₂ Et + CO ₂ Et NHAc Ph ^r NHAc	473
	Bu ₃ Sn CO ₂ Et NHAc	Pd2(dba)3•CHCl3 (4%), AsPh3 (30%), THF, reflux, 6 h	I (42) II (10) $E:Z = 1:1$ I (34) + II (32) $E:Z = 64:36$ Ph	473
	N N Ph	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 20 h	// (59) N N Ph	302
	Bu ₃ Sn N Ph	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 24 h	Ph N (49) N Ph	302
	Bu ₃ Sn N N Ph	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 24 h	$\frac{Ph}{N} \frac{(0)}{Ph}$	302
	Bu,Sn	Pd2(dba)3 (2.5%), air, Cul (50%), DMF, 60°, 0.5-1 h	$Ph \underbrace{\downarrow}_{0} (84)$	554
	Bu3Sn Secore Bu-n	Рd(PPh ₃) ₄ (10%). Cul, DMF, п, 24 h	Рh >= (87) ЕвО ₂ С Вн-л	555

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OEt Me ₃ Sn TBDMS	BnPd(PPh ₃) ₂ Cl, CuI, DMF, rt	$ \begin{array}{c} $	49
	Bu ₃ Sn	Pd(PPh ₃) ₄ , NEt ₃ , CH ₃ CN, 190°, 8 h	Ph-(268) H (268)	290
	Me ₃ Sn TBDMS	BnPd(PPh ₃) ₂ Cl, CuI, DMF, rt	Ph TBDMS (68)	49
	Bu ₃ Sn EtO ₂ C Ph	Pd(OAc) ₂ (10%), PPh ₃ (30%), DMF, rt, 72 h	EtO_2C Ph (75)	555
	Me ₃ Sn N Bn	Pd(PPh ₃) ₂ Cl ₂ (4.8%), CH ₂ Cl ₂ , 80°, 12 h	$ \begin{array}{c} Ph \\ N\\ Bn \end{array} $ (61)	459
	Bu ₃ Sn O O Ph	Pd(dba) ₂ (5%), PhMe, reflux, 12 h	Ph O O (78)	556
	Bu ₃ Sn	Pd(PPh ₃) ₄ (0.7%), DMF, 110°, 5 h	Ph- N SEM (98)	289
	Bu ₃ Sn O Bu-r	Pd₂(dba)₃ (2%), DMF, rt, 6 h	$ \underbrace{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	439
	Bu ₃ Sn O O	Pd(dba) ₂ (5%), Bu ₄ NI, DMF, 80°, 16 h	Ph 0 0 (60)	382
	Bu ₃ Sn Ph Ph	Pd(PPh ₃) ₂ Cl ₂ , PPh ₃ , LiCl, DMF, heat	Ph Ph (35) Ph Q	251
		¹³ Pd(PPh ₃) ₄ (10%), CuI (20%), DMF, 80°, 15 min	MOMO - O + O + O + O + O + O + O + O + O +	170
	Bu3Sn O Bu-n BnO	Pd ₂ (dba) ₃ (2%), DMF. rt, 6 h	$ \begin{array}{c} Ph \\ \hline O \\ BnO \end{array} $ (89) BnO	439
	H ₂ N Bu ₃ Sn SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 3 h	H ₂ N Ph- N SEM (93)	74
	SnBu ₃ Ph N ^N	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, 80°, 30 h	Ph Ph (39) Ph N N (39)	545
	F H Bu-1	Pd(PPh₃)4, PhMe, reflux	$F \xrightarrow{V} H \xrightarrow{O} Bu-t \qquad R = Me \text{ or } Bu$ $(25-30)$	556

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	287, 546 422 390 320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	422 390 320
$ \begin{array}{cccc} E_{12}NOC & & E_{12}NOC & \\ Bu_{3}Sn & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ E_{13}SnSPh & PhPd(PPh_{3})_{2}(1\%), & Ph_{2}S & (94) \\ & & & \\ & & & \\ & & & \\ E_{13}SnSSnEt_{3} & PhPd(PPh_{3})_{2}(1\%), & Ph_{2}S & (96) \\ & & & & \\ & & & $	390 320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	390 320
$PhN_{2}^{+} BF_{4}^{} Me_{4}Sn = Ph (Ph_{3}) Ph(PPh_{3})_{2} (1\%), Ph(PPh_{3})_{3} (96) Ph(PPh_{3})_{4} (1.3\%), Ph(Ph(Ph_{3})_{4} (1.3\%), Ph(Ph(Ph_{3}$	320
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	547
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	547, 557
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313
PhN ₂ ⁺ BF ₄ ⁻ Me ₄ Sn Pd(OAc) ₂ (10%), PhMe (55) CH ₃ CN, rt, 2 h Bu ₃ Sn Pd(dba) ₂ (10%), Ph (80) CH ₃ CN, rt, 5 min Ph Pd(dba) ₂ (5%), Ph (97) $F:Z = 40.60$	547, 313
Bu ₃ Sn Pd(dba) ₂ (10%), Ph (80) CH ₃ CN, rt, 5 min Ph Pd(dba) ₂ (5%), Ph (97) $F:Z = 40.60$	204
$Pd(dba)_2(5\%)$, $Pb(97) F'Z = 40.60$	204
$Me_3Sn \qquad CH_3CN, Ei_2O, rt \qquad Ph \qquad Ph \qquad rt = 40.00$	249
Ph Bu_3Sn Pd(dba) ₂ (5%), CH ₃ CN, Ph (90) E:Z = 18:82 Et ₂ O, rt. 20 min	249
PhOSO ₂ F Bu ₃ Sn Pd(PPh ₃) ₂ Cl ₂ (5%). Ph (76) LiCl. DMF. 25°, 6-18 h	203
$Bu_3Sn \qquad \qquad$	203
PhOTf Bu ₃ Sn Pd(PPh ₃) ₄ (7.5%), Ph (69) LiCl. DMF, 90°, 30 h	29, 201
$\begin{array}{ccc} OEt \\ Pd(PPh_3)_4 (2\%). LiCl, \\ Me_3Sn \\ dioxane. 95^\circ, 1.8 h \\ Ph \\ \end{array} $ (100)	270
$\begin{array}{c} Pd(PPh_{3})_{4} (5\%), LiCl, \\ HF, 66^{\circ}, 24 h \\ Ph \\ TMS \end{array} $ (37)	422
SnBu ₃ Ph Ph Ph Ph Ph O $Pd(PPh_3)_4 (10\%),$ LiCl. THF, reflux $OOOOOOOO$	475
PhOSO ₂ CF ₂ CF ₂ H Bu ₃ Sn $Pd(PPh_{3})_{4}$ (7.5%). Ph (51-65) LiCl, DMF, 90°, 30 h	29, 201
$\frac{PhTl(O_2CCF_3)_2}{reflux}$ $\frac{Ph_4Sn}{reflux}$ $\frac{Pd(OAc)_2, DMF, Ph-Ph (84)}{reflux}$	558
$ \begin{array}{c} Br \\ Br$	530
$\begin{bmatrix} N_{2}^{*} BF_{4}^{-} \\ Br \end{bmatrix} \qquad Me_{4}Sn \qquad Pd(OAc)_{2} (10\%). $ (41) $Br \qquad Br$	538

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

1.	ABLE III. DIRECT CROSS-C	OUPLING OF ARYL E	LECTROPHILES (Continued)	
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Br Br	Bu ₃ Sn O Ph OTBDMS	Pd(PPh ₃) ₄ (10%), PhMe, reflux	Ph' O O Ph OTBDMS (77)	423
Br	Bu ₃ Sn	Pd(PPh3)4 (2%), BHT, PhMe, reflux, 1 h	Br (63)	88
	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), BHT, PhMe, reflux, 1 h	(73)	88
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (10%), Et ₄ NCI. DMF. 80°, 1.5 h	Br OEt (56)	272, 273
	SnMe ₃	Pd(PPh ₃) ₄ (10%), PhMe, reflux	NN (50)	560, 561
	Bu_3SnNEt_2	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	Br (30)	90, 316
Br	Bu ₃ Sn CO ₂ Me	Pd(PPh ₃) ₄ (10%), CuI (75%), DMF, rt, 24 h	Br (92)	246
Br N2* PF6-	Me₄Sn	Pd(OAc) ₂ (10%), CH ₃ CN, rt, 2 h	Br (76)	204
Br OSO ₂ F	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, DMF, 25°, 6-18 h	Br (68)	203
Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), BHT, dioxane, 98°, 2.5 h	(77)	189
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 7 h	Tfo Br Br	189
	Bu ₃ Sn	Pd(PPh3)2Cl2 (2%), LiCl, BHT, DMF, 70°, 3 h	I + II, (75) $I:II = 6:1I + II, (45)$ $I:II = 1:5$	189
	Me ₃ Sn F	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (10%), LiCl, CuBr, BHT, dioxane, reflux	$ \begin{array}{c} F \\ F \\$	191
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), PPh ₃ (10%), CuBr, BHT, dioxane, reflux		191
	Bu ₃ Sn	Pd(PPh ₃) ₄ (20%), LiCl, CuBr (20%), BHT, dioxane, reflux	(47)	191
	MeO Me ₃ Sn MeO		$ \xrightarrow{OMe}_{MeO} \xrightarrow{MeO} (11) $	191
Br Br	Me ₃ Sn N	Pd(PPh3)2Cl2 (5%), THF, reflux, 23 h	(35)	562

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Br Br	Bu ₃ Sn OEt	1. Pd(PPh ₃) ₂ Cl ₂ (5%). Et ₄ NCl, CH ₃ CN, reflux, 4 h 2. H ⁺ , reflux, 3 h	(96) Br	553
Br	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	OH (71)	233
	Bu ₃ Sn CN	Pd[P(<i>a</i> -Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 24 h	CI (66)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (5%), HMPA, 80°, 20 h	OMe (61)	234
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	(80) Cl O	240
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	CO ₂ Et (66)	236
	BocHN	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, 90°, 25 h	(76) Cl NHBoc	564
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	SPh (73)	318
$\bigcup_{Cl}^{N_2^+ BF_4^-}$	Me₄Sn	Pd(OAc) ₂ (10%). CH ₃ CN, π, 2 h	(64)	204
OSO ₂ (CF ₂) ₂ O(CF ₂) ₂ H Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (7.5%), LiCl, DMF, 90°, 30 h	(70) CI	29, 201
Cl Br	Bu ₃ Sn BocHN	Pd(PPh ₃) ₂ Cl ₂ (5%). DMF, 90°, 25 h	Cl (80) NHBoc	564
	Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	Cl S Cl (60)	318
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	Cl SnBu ₃ (73)	547
CIN2+ BF4-	Me ₄ Sn	Pd(OAc) ₂ (10%), CH ₃ CN, rt, 2 h	CI (89)	204
CI	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	OH (73)	233
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 24 h	CI CN (66)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (5%), HMPA, 80°, 20 h	OMe (70)	234
	Bu ₃ Sn	Pd(PPh_3)_4 (1%), C_6H_6 , 100°, 20 h	(100)	3
	Me ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (0.5%). THF, reflux, 20 h	CI (80)	286
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	CI (73)	237, 240

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn <u>OMe</u>	BnPd(PPh ₃) ₂ C1, C ₆ H ₆ , 100°, 20 h	OMe (79)	305
	OEt Me ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (1%). PhMe, 100°, 20 h 2. H*	O (73)	269
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	CI CO ₂ Et (89)	236
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	OEt (76) E:Z = 65:35	534
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(66)	538
	TMS Bu ₃ Sn OMe	Pd(PPh ₃) ₄ , C ₆ H ₆ , 110°	CI CI CI CI CI CI CI CI CI CI CI CI CI C	305, 532
	Bu ₃ Sn \swarrow OBu- <i>i</i>	BnPd(PPh ₃) ₂ Cl, DMF, 70°, 16 h	OBu- <i>t</i> Cl	296
	Me ₃ Sn OH	Pd(PPh ₃) ₄ (2%), PhMe. retlux, 1 h	Cl O TBDMS (88)	371
	Bu ₃ Sn N TIPS	$Pd(PPh_3)_4$ (17%), dioxane, reflux, 40 h	CI (89)	565
	Bu ₃ Sn O OTBDMS OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe	CI O OTBDMS (49) OTBDMS	299, 300
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	NEt ₂ (55)	90, 316
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	CI SPh (74)	318
	Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h		318
	Me ₃ SnTMS	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	CI (34)	547
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	Cl SnBu ₃ (59)	547
CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(4)	3
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%). DMF, 20°, 10 min	CI (94)	553

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%). C ₆ H ₆ , 120°, 20 h	(29)	3
	Me ₃ SnC=CPh	Pd(CH ₃ CN ₂ Cl ₂ (2%), DMF, 20°, 25 min	CI C ² CPn (90)	553
	Bu ₃ Sn OBu-r	BnPd(PPh ₃) ₂ Cl. DMF, 70°, 16 h	OBu-1 (94)	296
	Mc ₃ SnSnMc ₃	Pd(PPh ₃) ₄ (1.3%). PhMe, 115°, 15 h	CI SnMe ₃ (74)	547
	Bu ₃ SnSnBu ₃	NiBr ₂ (10%), HMPA. 135°, 17 h	CI SnBu ₃ (92)	566, 313
OSO ₂ (CF ₂) ₂ O(CF ₂)	Bu ₃ Sn	Pd(PPh ₃) ₄ (7.5%), LiCl DMF, 90°, 30 h	CI (77)	29, 201
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), LiCl THF, 90°, 30 h	CI (39) + (33)	29
CI	Me₄Sn	Pd(OAc) ₂ (10%). CH ₃ CN, rt. 2 h	C (88)	204
F Br	Me₄Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	(89)	19
	Me ₃ Sn KN	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 24 h	F (100)	550, 551
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	e^{-1} OEt (78) $E:Z = 60:40$	534
	$Bu_{3}Sn \underbrace{OEt}_{E;Z=85;15}$	Pd(PPh ₃) ₄ (2%). C ₆ H ₆ , 80°, 20 h	$\begin{array}{c} F \\ OEt \\ OEt \end{array} (60) E:Z = 85:15 \\ \end{array}$	539
F Br F	SnMe ₃	Pd(PPh ₃) ₂ Cl ₂ (7%), HMPA, dioxane, reflux, 24 h	F (47)	567
F	Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ •CHCl ₃ (4%), P(2-furyl) ₃ (30%). THF, reflux, 6 h	F CO ₂ Et NHAc	473
Br F F	Bu ₃ Sn	Pd(PPh3)2Cl2, PhMe, 100°, 16 h	$Br \underbrace{F}_{F} (-)$	568
	Bu ₃ Sn S S S	Pd(PPh3)4, PhMe, reflux	$\begin{bmatrix} s \\ s \end{bmatrix} = \begin{pmatrix} s \\ s \end{bmatrix} \begin{bmatrix} s \\ s \\ s \end{bmatrix} \begin{pmatrix} s \\ s \end{bmatrix} \begin{pmatrix} s \\ s \end{bmatrix} \begin{pmatrix} s \\ s \end{pmatrix} $	536
N2 ⁺ BF4 ⁻			Ph (86) Fr7 = 8:02	240

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
OTr	Bu _A Sn	Pd(PPh ₃) ₄ (2%). LiCl, BHT, dioxane. 98°, 16 h	(73)	189
HO OH	Bu ₃ Sn (O _N) (V) (V) (OMe) (OMe)	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), dioxane, 50°, 48 h		569
Trio	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (20%), dppf (80%), LiCl, DMF, reflux	MeO OMe MeO OMe (100)	191
Br NH ₂	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (1%), Et ₄ NCI, DMF, 100°, 1.5 h	OEt ()	273
NH ₂	Cl ₃ Sn CO ₂ H	PdCl ₂ (0.8%), PPh ₂ (C ₆ H ₄ SO ₃ Na-m) (3.2%), KOH, H ₂ O, 100°, 4 h	(57) N O	282
	Cl ₃ SaPh	PdCl ₂ (0.8%), PPh ₂ (C ₆ H ₄ SO ₃ Na-m) (1.6%), KOH, H ₂ O, 100°, 3 h	Ph (88) NH ₂	282
H ₂ N Br	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (1%), Et ₄ NCl, DMF. 80°, 18 h	H_2N (0)	272. 273
	Bu ₃ SnNEt ₂ O /	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhM e, 100°, 3 h	$H_2N \xrightarrow{\mathbf{NEt}_2} (0)$	316
H ₂ N	Bu ₃ Sn	Pd ₂ (dba) ₃ (4.8%), AsPh ₃ , Cul. DMF, 60°, 3-4 h	$H_2N \longrightarrow O$ (59)	554
NO ₂ Br	Bu ₃ Sn O'N	Pd(PPh ₃) ₂ Cl ₂ (1%), dioxane, reflux, 20 h	NO_2 (90)	530
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1%), dioxane, reflux, 20 h	$NO_2 \rightarrow 0$ $N \qquad (57)$	530
	OHC Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), DMF, 100°, 24 h	(62) NO ₂	570
	OHC Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), DMF, 100°, 24 h	(52) NO ₂ CHO	570, 571
	Bu ₃ Sn N(TMS) ₂	 Pd(PPh₃)₄ (2%), PhMe, reflux, 63h H₃O⁺ 	NH ₂ (88)	461, 540
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , DMF, 80°. 12 h	$NO_2 NO_2 NO_2 (78)$	572

Substrate	Stannane	Conditions Product(s) and Yield(s)	(%) Refs.
	$Bu_3SnSnBu_3$	$\begin{array}{c} Pd(PPh_3)_4 \ (3^{\mathcal{C}_1}), \\ PhMe, 80^\circ \end{array} \qquad $	310
	Bu ₃ Sn - O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	554
	Bu ₃ Sn	Pd(PPh ₃) ₄ (0.7%), DMF. 110°, 6 h NO ₂ SEM (97)	289
	Me ₃ SnSnMe ₃	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 5 min	312, 573
	Me ₃ SnSnMe ₃	$[(\eta^{3}-C_{3}H_{5})PdCl]_{2},$ (75) $CH_{2}Cl_{2}, 20^{\circ}$	557
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 80°, 72 h NO_2 (98)	311
N2* PF6- NO2	Me ₄ Sn	Pd(OAc) ₂ (10%), CH ₃ CN, rt, 2 h (94)	204
O ₂ N Br	Me-Sn N	Pd(dppf)Cl ₂ , PhMe, 105°, 2 h (93)	41
	MOMO Sn N	Pd(PPh ₃) ₄ , PhMe, 105°, 3 h (80)	41
	n-Bu-Sn N	Pd(dppf)Cl ₂ . PhMe, 105° . 12 h (86)	41
	TMS	Pd(PPh_3) ₄ , PhMe, 105° , 20 h O_2N (85)	41
	Me ₃ SnSnMe ₃	$\begin{array}{c} O_2 N \\ Pd(PPh_3)_4 (1.3\%), \\ PhMe, 80^\circ, 1 h \end{array} $ (41)	547
O ₂ N	Bu ₃ Sn	$\begin{array}{c} O_2 N & O \\ Pd_2(dba)_3 (2.5\%), \\ A_8 Ph_3 (20\%), Cul (50\%), \\ DMF, 60^\circ, 3.4 h & O \end{array} $ (80)	554
	Bu ₃ Sn - Bu O	$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & $	554
	Me ₃ SnSnMe ₃	$\begin{array}{c} O_2 N \\ Pd(CH_3 CN)_2 CI_2 (2\%), \\ DME 20^{\circ} 10 \text{ min} \end{array} $ (98)	312, 573
	Me ₃ SnSnMe ₃	$Pd(PPh_3)_4 (1\%),$ (65) $PhMe. 60^\circ, 72 h$	310, 311
	Me ₃ SnSnMe ₃	$[(\eta^3 - C_3 H_5) PdC1]_2,$ (55) CH ₂ Cl ₂ . 20°	557
$\left(\begin{array}{c} O_2 N \\ \end{array} \right)_2 1^+ BF_4^-$	Me₄Sn	Pd(OAc) ₂ (2%), DMF. 60-70°. 2.5 h (77)	206
	Me ₃ Sn	$\begin{array}{c} O_2 N \\ O_2 N \\ DMF, 60-70^{\circ}, 2.5 h \end{array} $ (83)	206
O ₂ N N ₂ ⁺ PF ₆ ⁻	Me ₄ Sn	$\begin{array}{c} O_2 N \\ Pd(OAc)_2 (10\%), \\ CH_3 CN, rt, 2 h \end{array} $ (62)	204

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn Ph	Pd(dba) ₂ (5%), CH ₃ CN, Et ₂ O, rt, 2 h	O_2N (54) $E:Z = 8:92$	249
O ₂ N Br	Bu ₃ Sn OH	$Pd(PPh_3)_4 (5\%),$ dioxane, 80°	O ₂ N OH (0)	233
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), BHT. PhMe, reflux, 4 h	0 ₂ N (80)	88
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃]Cl ₂ (1%), m-xylene, 120°, 3 h	O ₂ N (tr)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	O ₂ N OMe (65)	234
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	O ₂ N (72)	3
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (10%) PhMc, 100°, 5 h	0, O ₂ N (0)	240
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2, 70^\circ$	O ₂ N (99)	574
	Bu ₃ Sn OMe	BnPd(PPh ₃) ₂ Cl, C_6H_6 , 100°, 20 h	O ₂ N OEt (75)	305
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, 105°, 48 h	O ₂ N (82)	270
	OEt Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (1%). PhMe, 100°, 20 h 2. H*	0 (91) O ₂ N	269
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (10%), Et ₄ NCl, DMF, 80°, 2 h	O ₂ N OEt (86)	272. 273
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	O ₂ N CO ₂ Et (34)	236
	Bu ₃ Sn S	$Pd(PPh_3)_2Cl_2, 70^\circ$	O ₂ N (93)	574
	Bu ₃ Sn N Me	$Pd(PPh_3)_2Cl_2$, 70°	O ₂ N (77) Me	574
	OTMS Bu ₃ Sn	Pd(PPh ₃) ₄ , PhMe, 100°	0 ₂ N (63)	457
	Bu ₃ SnPh	D ₇₁₇ -Pd(0)-polymer, Me ₂ CO, reflux, 25 h	0.2N (57)	535
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	0 ₂ N (68)	538
	Bu ₃ Sn I TMS	$\begin{array}{l} Pd(PPh_3)_4,\\ C_6H_6,110^{\circ} \end{array}$	O ₂ N OMe (58)	305

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OBu-r	BnPd(PPh ₃) ₂ Cl, DMF, 70°, 16 h	OBu-1 (98)	296
	Bu ₃ Sn N(TMS) ₂	1. Pd(PPh ₃) ₄ , PhMe, reflux, 63 h 2. H ₃ O ⁺	O ₂ N NH ₂ (59)	461
	Bu ₃ Sn OMe OMe	Pd(PPh ₃) ₄ (5%), Cul (8%). NMP. 70°, 48 h	O ₂ N OMe (45)	575
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (5%), HMPA, 80°, 23 h	0,N (81)	287, 546
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), dioxane, reflux, 24 h	0 ₂ N (77)	565
	Bu ₃ Sn OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe	OTBDMS (78) OTBDMS OTBDMS	299, 300
	Bu ₃ Sn O	Pd(PPh ₃) ₄ (5%), HMPA, 80°, 24 h	O ₂ N, NO ₂ (85)	287, 546
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	0 ₂ N NEt ₂ (24)	90. 316
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	0 ₂ N (52)	318
	Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	0.5N NO2 (44)	318
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), PhMe, 120°, 40 h	$O_2N - O_2 (58)$	548
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%). PhMe, 80-120°, 1-15 h	O-N SnMe ₃ (37)	547
	$Bu_3SnSnBu_3$	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, 20°, 1 h	SnBu ₃ (48)	313
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	" (38)	310
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	O_2N \sim	547, 548
O ₂ N	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	0 ₂ N (59)	3
O ₂ N	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 115°, 15 h	O ₂ N (0)	547
O-N	Me ₄ Sn	PhPd(PPh ₃) ₂ I (2%), HMPA, 70°, 30 min	O ₂ N (87)	463
-	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, <1 min	O ₂ N (98)	553, 463

	ABBE III. DIRECT CROSS	COOLENIG OF MILLE	seee (commutu)	
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%). THF, 78°, 2 h	O ₂ N (50)	267
	Bu ₃ SnC≡COEt	Pd(PPh ₃) ₂ Cl ₂ (5%), Еt ₄ NCl, DMF, п. 1 h	O_2N (52)	302
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2 (1-2\%),$ PhMe, reflux	0 0 0 0 ₂ N (0)	261
	CO ₂ Me Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), Cul, DMF, rt, 12 h	CO ₂ Me (76)	246
	Me ₃ Sn S	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 5 min	0-N (96)	553
	$Bu_3SnC \equiv CCO_2Et$	Pd(PPh ₃) ₂ Cl ₂ (1%), Et ₄ NCl, ZnCl ₂ , C ₆ H ₆ , 50°, 1 h	O_2N (47)	552
	Buisn	Pd/C (5%), CuI (10%), AsPh ₃ (20%), NMP, 80°, 24 h	O-1N (85)	458
	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 3 h	O ₂ N (100)	553
	Me ₃ SnPh	PhPd(PPh ₃) ₂ I (2%), HMPA, 20°, 20 min	O_2N Ph I (92) + Ph-Ph II (8)	463, 576
	Me ₃ SnPh	(p-O ₂ NC ₆ H ₄)Pd(PPh ₃) ₂ I Cl(CH ₂) ₂ Cl, 120-130°,	(2%), I (83) + II (17) 2 h	87
	Me ₃ Sn	PhPd(PPh ₃) ₂ I (2%). HMPA, 20°, 20 min	O_2N $ C_1$ I (86) + C_1 $ C_1$ $ (8)$	463
	'n	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 5 h	I (94)	553
	Me ₃ Sn NO ₂	PhPd(PPh ₃) ₂ I (2%), HMPA, 20°, 5 h	$O_2N - NO_2$ (97)	463
	Me ₃ Sn	$PhPd(PPh_{3})_{2}I(2\%),$ $Cl(CH_{2})_{2}Cl, 120^{\circ}, 2 h$	O ₂ N-(76)	87
	Me ₃ Sn	PhPd(PPh ₃) ₂ I (2%), HMPA, 20°, 20 min	O ₂ N-(1 (87) +	463
	'n	$Pd(CH_3CN)_2Cl_2$ (2%).	(12) I (96)	553
	Me ₃ Sn	DMF, 20°, 3 h Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 3 h	O ₂ N	463, 553
	Me ₃ SnC≡CPh	PhPd(PPh ₃) ₂ I (2%), HMPA, 20°, 10 h	O_2N $C\equiv CPh$ I (57)	463
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
------------------	--------------------------------------	---	--------------------------------------	--------
	Me ₃ SnC≡CPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 5 min	1 (93)	553
	Me ₃ SnC≡CPh	$\label{eq:PhPd} \begin{array}{l} PhPd(PPh_{3})_{2}I~(2\%),\\ CI(CH_{2})_{2}CI,~120^{\circ},~2~h \end{array}$	1 (94)	87
	Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), air, Cul (50%), DMF, 60°, 0.5-1 h	O_2N (85)	554
	Bu ₃ Sn	n	0 ₂ N (76)	554
	H ₂ N		H ₂ N	
	Bu ₃ Sn- N SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 3 h	$O_2N \longrightarrow N$ (86) SEM	74
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 90°	0 ₂ N (66) + (-	-) 577
	Et ₃ SnSSnEt ₃	PhPd(PPh ₃)₂I (5%).	+ ()	320
	MetSnSnMet	DMSO, 100°, 4 h Pd(CH ₃ CN) ₂ Cl ₂ (2%),	O_2N NO_2 NO_2 NO_2 NO_2	312
	Ma SpSpMa	DMF, 20°, 5 min	O ₂ N	557
	wegenemice;	$CH_2Ch_2, 20^\circ$	SnEt ₃	212
	Et ₃ SnSnEt ₃	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, 20°, 5 min	0 ₂ N (81)	313
	Bu ₃ SnSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, 20°, 5 min	O ₂ N (94)	313
	$Bu_3SnSnBu_3$	NiBr ₂ (10%), HMPA, 135°, 3 h	" (72)	315
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 115°, 15 h	" (0)	547
. NI + DC -	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe, 60°, 72 h	" (63)	311
O ₂ N	Me₄Sn	Pd(OAc) ₂ (10%), CH ₃ CN, rt, 2 h	(95) O ₂ N (95)	204
- 050 F	Bu ₃ Sn	Pd(dba) ₂ (5%), Et ₂ O CH ₃ CN, rt, 1 h	O_2N (60) E:Z = 16:84	249
0 ₂ N	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, DMF, 25°, 6-18 h	(60)	203
	Bu ₃ Sn	n	0 ₂ N-OMe (50)	203

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
O ₂ N OTf	(TMSCH₂)₄Sn	Pd(PPh ₃) ₂ Cl ₂ (2%). LiCl, BHT, dioxane, 98°, 9 h	O ₂ N (25)	189
	Bu ₃ Sn OMe	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 36	$h_{h} O_2 N \longrightarrow OMe$ (74)	189, 420
	Bu ₃ Sn CO ₂ Bn	Pd(PPh ₃) ₂ Cl ₂ (2%), LiCl, BHT, DMF, 100°, 5 h	O_2N (47) $E:Z = 1:2$	189
	Bu ₃ Sn CO ₂ Bn	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98° 9 h	O_2N (82)	189
OTF Br NO ₂	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), PhMe, reflux, 48 h	OTF (91) NO ₂	89
O ₂ N H ₂ N Br	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , PPh ₃ , DMF	0 ₂ N H ₂ N (96)	578
O ₂ N Br NO ₂	Me ₃ SnPh	PhPd(PPh ₃) ₂ I (2%), Cl(CH ₂) ₂ Cl, 120-130°, 2 h	O_2N Ph (93) O_2N NO_2	87
	Me ₃ SnPh	$[(\eta^3-C_3H_5)PdCl]_2 (1\%).$ Me ₂ CO, 20°, 24 h	" (99)	553, 557
02.0 0.02	Me ₃ SnPh	(p-O ₂ NC ₆ H ₄)Pd(PPh ₃) ₂ I Cl(CH ₂) ₂ Cl, 120-130°,	(2%), " (94) 2 h	87
	Me ₃ SnSnMe ₃	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 5 min	$O_2N \xrightarrow{SnMe_3} (93)$	312, 573
	Mc ₃ SnSnMe ₃	$\label{eq:2.1} \begin{array}{l} [(\eta^3\text{-}C_3H_5)\text{PdCl}]_2 \ (1\%),\\ CH_2Cl_2, \ 20^\circ \end{array}$	" (70)	573
	Bu ₃ SnSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, 20°, 1 h	O ₂ N (79)	313
NO ₂ R NO ₂ NO ₂	Me ₃ SnPh	PhPd(PPh ₃) ₂ I, Cl(CH ₂) ₂ Cl, 120-130°, 1.5 h	NO_2 Ph R = C1 (95) NO_2 R = I (96)	87, 576 87
	Me ₃ SnC≡CPh		C = 1 (85)	87
OH	Bu ₃ Sn- O-N	Pd ₂ (dba) ₃ (2.5%). AsPh ₃ (20%), dioxane, 50°	(95)	471, 579
	MeO OMe Bu ₃ Sn - OMe ON	" 2	OH MeO OMe (81) OMe	471
HO Br	Cl ₃ SnPh	PdCl ₂ (0.5-3%). PPh(C ₆ H ₄ SO ₃ Na- <i>m</i>) ₂ , KOH, H ₂ O, 90°	HO Ph (89)	281, 282
Br	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ Et ₄ NCl, DMF, 80°, 12 h	HO OEt (0)	272. 273

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn CO ₂ Et	Pd[P(ο-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	CO ₂ Et (71)	236
	OTMS		OTMS	
	Me ₃ Sn	Pd(PPh ₃) ₄ , PhMe, 100°	(63)	457
	OSnBu ₃	$Pd[P(o-Tol)_3]_2Cl_2(3\%),$ C_6H_6 , reflux, 3 h	(59)	241
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(93)	538
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(97)	538
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(87)	53 8
	Me ₃ Sn OBu- <i>t</i>	BnPd(PPh ₃) ₂ Cl, DMF, 70°, 16 h	OBu-1 (64)	296
	Me ₃ Sn OH	Pd(PPh ₃) ₄ , PhMe, reflux, 4 h	OH (80)	371
	Bu ₃ Sn O OTBDMS OTBDMS OTBDMS	$Pd(PPh_3)_2Cl_2$, PhMe, reflux	OTBDMS OTBDMS (49)	299, 300
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	NEt ₂ (33)	90, 316
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	SPh (67)	238
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	SnBu ₃ (64)	547
		Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	(90)	240
	Bu ₃ Sn O	Pd(OAc) ₂ (5%), P(<i>o</i> -Tol) ₃ , NEt ₃ , CH ₃ CN, reflux, 2 h		429
	Bu ₃ Sn O O	Pd(PPh ₃) ₂ Cl ₂ (1-2%), PhMe, reflux	(36)	261
	Bu ₃ Sn O	$Pd(PPh_3)_2Cl_2 (1-2\%),$ PhMe, reflux	(76) O (76)	261
	MeO ₂ C Bu ₃ Sn	Pd(OAc) ₂ (15%), P(o-Tol) ₃ , NEt ₃ , CH ₃ CN, reflux, 3 h	(82) CO ₂ Me	580

_	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ Sn CO ₂ Me PhS	Pd(OAc) ₂ (15%), P(o-Tol) ₃ , NEt ₃ , CH ₃ CN, reflux, 3 h	SPh CO ₂ Me (62)	580
		Bu ₃ Sn	Pd(PPh ₃) ₄ (0.7%), DMF, 110°, 2 h	(93) SEM	289
		$Et_3SnSSnEt_3$	PhPd(PPh ₃) ₂ I (5%), DMSO, 100°, 4 h	(82)	320
	Br	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	OH (62)	233
		Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), m-xylene, 120°, 3 h	CN (74)	235
		Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	OMe (72)	234
		OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	(88) O	237, 240
		Bu ₃ Sn CO ₂ Et	Pd[P(o-Toi) ₃] ₂ Cl ₂ (1%), Z nBr ₂ , DMF, 80°, 5 h	CO ₂ Et (60)	236
		OEt Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 20 h 2. H ⁺	(70)	269
		Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	Ph (80)	538
		Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(82)	538
		Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C_6H_6 , 120°, 20 h	(72)	538
		Me ₃ Sn	Pd(PPh3)4 (2%), PhMe, reflux, 18 h	OH (55)	371
		Bu ₃ SnNEt ₂	Pd[P(o-Tol)3]2Cl2 (1%), PhMe, 100°, 3 h	NEt ₂ (61)	90, 316
		[Bu3SnNHPh]	Pd[P(o-Tol)3]2Cl2 (2%), PhMe, 105°	NHPh (66)	91
		Bu ₃ Sn ^{-N} OMe	Pd[P(o-Tol) ₃] ₂ Cl ₂ (2%), PhMe, 105°	OMe (64)	91
		$\begin{bmatrix} C_{18}H_{37}-n\\ Bu_3Sn^{-N} & Me \end{bmatrix}$	Pd[P(0-Tol)3]2Cl2 (2%), PhMe, 105°	C ₁₈ H ₃₇ -n N. Me (79)	91
		Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	S (50)	238

TABLE III, DIRECT CROSS-COULTING OF ARTE LEECTROFFILES (Continue	TABLE III. DIRECT	CROSS-COUPLING OF ARYL ELECTROPHILES	(Continued
--	-------------------	---	------------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
I I	$Et_3SnSSnEt_3$	PhPd(PPh ₃) ₂ I (5%). DMSO, 100°. 4 h	S (70)	320
	Bu ₃ SnPh	Pd(OAc) ₂ (5%), Ph ₂ PMe (11%), LiCl, DMF, 110°, 76 h	Ph (41)	202
~	Bu ₃ SnPh	Pd(OAc) ₂ (5%), dppp (5.5%), LiCl. DMF, 110°, 72 h	0,5,0 Me ₂ N (70)	202
Br	Me₄Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	(84)	19
	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	OH (52)	233
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 3 h	CN (78)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	OMe (67)	234
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	O (80)	237, 24
	OEt Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 20 h 2. H ⁺	(67)	269
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	CO ₂ Et (93)	236
	Me ₃ Sn KN	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 12 h	0 N (70)	550
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	••••••••••••••••••••••••••••••••••••••	534
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	••••••••••••••••••••••••••••••••••••••	534
	Bu ₃ Sn	1. Pd(PPh ₃)₄ (5%). C ₆ H ₆ , 120°, 20 h 2. H ⁺	СНО (71)	581
	OTMS Me ₃ Sn	1. Pd(PPh ₃) ₄ , PhMe. 100° 2. H ⁺	(66)	457
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	Ph (61)	538
	OTMS Me ₃ Sn	1. Pd(PPh ₃) ₄ . PhMe, 100° 2. H ⁺	(35)	457
	Bu ₃ Sn	Pd(PPh_3)_4 (1%). $C_6 H_6, \ 120^\circ, \ 20 \ h$	(77)	538
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%). C ₆ H ₆ , 120°, 20 h	(64)	538

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELE	ECTROPHILES (C	ontinued
--	----------------	----------

·····	TABLE III. Dikter exoss-ee		Ee ricor mees (communa)	
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OSnBu ₃	$\begin{array}{l} Pd[P(o\text{-}\mathrm{Tol})_3]_2Cl_2 \ (3\%),\\ C_6H_6, reflux, 3 h \end{array}$	(62)	241
	Me ₃ Sn TMSO	1. Pd(PPh ₃) ₄ , PhMe, 100° 2. H ⁺	(31)	457
	Bu ₃ Sn OMe	1. Pd(PPh ₃) ₄ , C ₆ H ₆ , 100° 2. Bu ₄ NF, THF	OMe (87)	532
	Bu ₃ Sn- N R	Pd(PPh ₃) ₂ Cl ₂ , THF, reflux, 2 h	R = Me (82) $R = SEM (66)$	425
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ , PhMe, 100°, 20 h		541
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), DMF, 105°	(36) +	378
	5.0		OMe (22)	
	Bu ₃ Sn N TIPS	Pd(PPh ₃) ₄ (16%), dioxane, reflux, 40 h	N~TIPS (69)	565
	Bu_3SnNEt_2	Pd[P(<i>v</i> -Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	NEt ₂ (79)	90, 316
	$\begin{bmatrix} Ph \\ Bu_3Sn-N \\ Me \end{bmatrix}$	Pd[P(0-Tol) ₃] ₂ Cl ₂ (2%), PhMe, 105-100°	N. Me (73)	91
	Bu ₃ Sn-N	Pd[P(o-Tol) ₃] ₂ Cl ₂ (2%), PhMe. 105°		91
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	SPh (76)	318
	Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(60)	312
	Me ₃ SnTMS	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	TMS (60)	547
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	SnBu ₃ (75)	547
	Me ₄ Sn	Pd(Ph-BIAN) (dimethyl fumarate)(1%) DMF, 50°, 18 h	. (41)	415
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (4%), Cul, DMF, rt, 2 h		287, 546
	Bu ₃ SnC=COEt	Pd(PPh ₃) ₂ Cl ₂ (5%). Et ₄ NCl, DMF, rt, 15 h	(45)	302

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

	TABLE III. DIRECT CR055-CO			
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			CO ₂ Me	
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10%). CuI, DMF, rt, 48 h	(71)	246
	Bu ₃ SnC≡CCO ₂ Et	$\begin{array}{l} Pd(PPh_3)_2Cl_2\ (1\%),\\ Et_4NCl,\ ZnCl_2,\\ DMF,\ rt,\ 40\ h \end{array}$	C ^ź CCO ₂ Et (23)	552
	Cŀ₃SnPh	PdCl ₂ (0.8%), PPh ₂ (C ₆ H ₄ SO ₃ Na- <i>m</i>) (1.6%), KOH, H ₂ O, 100°, 3 h	Ph (86)	282
	Bu ₃ Sn	Pd(Ph-BIAN) (dimethyl fumarate) (1%), DMF, 50°, 18 h	(35)	415
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (7%), DMF, 65°, 10 h	(45)	287, 546
	Me ₃ SnPPh ₂	Pd(CH ₃ CN) ₂ Cl ₂ (2.5%), C ₆ H ₆ , 60°, 36 h	PPh ₂ (74)	321
	$Et_3SnSSnEt_3$	PhPd(PPh ₃) ₂ I (5%), DMSO, 100°, 4 h	(88)	320
	МезSпSпMeз	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 115°, 15 h	SnMe ₃ (86)	547
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 115°, 15 h	SnBu ₃ (81)	547
N ₂ + BF ₄ -	Bu ₃ Sn	Pd(dba) ₂ (5%), CH ₃ CN, Et ₂ O, rt, 15 min	(97) E:Z = 7:93	249
CF ₃	Bu ₃ Sn OBu- <i>t</i>	BnPd(PPh ₃) ₂ Cl, DMF, 70°, 16 h	CF_3 $OBu-t$ (90)	296
F ₃ C	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (1–2%), PhMe, reflux	F_3C (61)	261
	Bu ₃ Sn CO	Pd(PPh ₃) ₂ Cl ₂ (1-2%), PhMe, reflux	F ₃ C (23)	261
	Bu ₃ Sn O O	Pd/C (0.5%), AsPh3 (20%), Cul (10%), NMP, 80°, 24 h	F ₃ C (67)	461
F ₃ C	CO ₂ Me Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), Cul (75%), DMF, rt, 24 h	F ₃ C (72)	246
	Bu ₃ Sn OMe	Pd(PPh ₃) ₄ (5%), DMF, 105°	F ₃ C (49) +	378
			Ph (2) OMe	

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
F ₃ C Br NO ₂	Bu ₃ Sn Cl N Cl	Pd(PPh ₃) ₄ , Cul	Cl N Cl (>61) F ₃ C NO ₂	582
Br	Bu ₃ Sn N	Pd(PPh_3) ₄ (2%), C_6H_6 , 80°, 20 h		550
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , dioxane, 105°		583
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , dioxane, 105°		583
	Me ₃ Sn S OTBDMS	Pd(PPh ₃) ₄ , PhMe, reflux	OTBDMS (65)	584
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , dioxane, 105°		584
	Bu ₃ Sn N OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , CuI, THF, reflux, 48 h	CN OTBDMS (67)	585
	Me ₃ Sn N N N	Pd(PPh ₃) ₄ Cl ₂ , DMF, 100°, 12 h	(83)	572
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1%). PhMe, 80°	SnBu ₃ (42)	310
	Bu ₃ Sn OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , Cul, THF, reflux, 48 h	OTBDMS (67)	585
NC	Bu ₃ Sn N(TMS) ₂	 Pd(PPh₃)₄ (2%), PhMe, reflux, 72h H⁺ 	NC NH ₂ (72)	464
	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe. 80°	NC SnBu ₃ (31)	310
NC Br	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	NC OH (0)	233
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 20 h	NC CN (tr)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	NC OMe (57)	234

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	NC (0)	237
	Bu ₃ Sn OMe	BnPd(PPh ₃) ₂ Cl, C ₆ H ₆ , 100°, 20 h	NC OMe (73)	305
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ . DMF, 80°, 5 h	NC O CO_2Et (67)	236
	OEt Bu ₃ Sn	 Pd(PPh₃)₂Cl₂ (1%), PhMe, 100°, 20 h H⁺ 	NC (81)	269
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%). PhMe, 120°, 20 h	NC SPh (72)	318
	OTMS Me ₃ Sn	Pd(PPh ₃) ₄ , PhMe, 100°	NC (67)	457
	$\overbrace{\ }^{R_{3}Sn}\overbrace{\ }^{S}\underset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}}}}}$	Pd(PPh ₃) ₄ , PhMe, reflux, 3 h	NC S S $R = Me (98)$ R = Bu (95)	536
	Me ₃ Sn OTMS	1. Pd(PPh ₃) ₄ , PhMe, 100° 2. H ⁺	NC (47)	457
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%). PhMe, 120°, 20 h	NC (92)	538
	Me ₃ Sn OTMS	1. Pd(PPh ₃) ₄ , PhMe, 100° 2. H*	NC TMS	457
	Bu ₃ Sn TMS	$Pd(PPh_3)_4, C_6H_6, 110^{\circ}$	NC OMe (65)	305
	Bu ₃ Sn TMS	1. Pd(PPh ₃) ₄ , C ₆ H ₆ , 110° 2. Bu ₄ NF, THF	NC OMe (77)	532
	Bu ₃ Sn	Pd(PPh3)2Cl2, THF, reflux, 2 h	NC NC $R = Me (91)$ R = Boc (66)	425
	Bu ₃ Sn <u>N(TMS)</u>	 Pd(PPh₃)₄ (2%), PhMe, reflux, 24 h H⁺ 	NC NH ₂ (79)	464, 540
	N TIPS	Pd(PPh ₃) ₄ (15%), dioxane, reflux, 38 h	NC (81)	565
	Bu ₃ Sn OTBDMS OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ . PhMe, 20 min	OTBDMS (81) OTBDMS OTBDMS	299. 300
	Bu_3SnNEt_2	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	NC (25)	90, 316
	$Bu_3SnSSnBu_3$	Pd(PPh ₃) ₄ (1%). PhMe. 120°, 20 h	NC (57)	318

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	NC SnMe ₃ (64)	547
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Br ₂ (1.3%), PhMe, 110°, 15 h	SnBu ₃ (57)	547, 310
NC	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%). DMF, 20°, 5 min	NC (99)	553
	Me ₃ Sn S	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 10 min	NC (91)	553
	$Bu_3SnC\equiv CCO_2Et$	Pd(PPh3)2Cl2 (1%). Et4NCl, ZnCl2, DMF, rt, 72h	NC $C^{\pm CCO_2Et}$ (8)	552
	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 4 h	NC Ph (92)	553
	Me ₃ Sn OMe	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 4 h	NC-OMe (94)	553
	Me ₃ SnC≡CPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 10 min	NC CECPN (95)	553
	Me ₃ SnSnMe ₃	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 10 min	NC SnMe ₃ (98)	312
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 60°, 72 h	NC SnBu ₃ (85)	311
D ₂ N Br	Bu ₃ Sn OMe OMe	Pd(PPh ₃) ₄ (5%). Cul (8%), NMP. 70°, 48 h	O ₂ N OMe (51)	575
NO ₂ OTr OMe	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	(0) OMe Cla N Cl	190
MeO NO ₂	Bu ₃ Sn Cl N Cl	Pd(PPh ₃) ₄ , CuI	(≥55) MeO NO ₂	582
N ₃	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ , dioxane, 70°, 3 h	$\begin{array}{c} HO_2C \\ N_3 \\ N_3 \end{array} $ (70)	586
CHO Br	Me ₃ Sn OH	Pd(PPh ₃) ₄ (2%), PhMe, reflux, 1 h	OH (85)	371
CHO OTf	Bu ₃ Sn O N' ^{Me} CH(TMS) ₂	Pd(II), LiCl, DMF, 100°	OHC O N.Me CH(TMS) ₂ (40)	587
Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), BHT, PhMe, reflux, 3 h	OHC (78)	88

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
OMe	Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ (20%), air, Cul (50%), DMF, 60°, 3-4 h	0 (67) MeO O	554
	Bu₃SnC≡CSnBu₃	Pd(PPh ₃); (10%), LiCl, BHT, dioxane, reflux, 5 h	OMe (85)	589
MeO Br	$\begin{bmatrix} Bu_3Sn - N & Ph \\ Me \end{bmatrix}$	Pd[P(<i>o</i> -Tol) ₃] ₂ Cl ₂ (2%), PhMe, 105°	MeO Ph N. Me (79)	91
	Bu ₃ Sn Me ^{-N} OMe	Pd[P(o-Tol)3]2Cl2 (2%), PhMe, 105°	MeO N. Me OMe (84)	91
McO	Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ (20%), air, Cul (50%), DMF, 60°, 3-4 h	MeO (67)	554
	Bu₃SnC≡CSnBu₃	Pd(PPh ₃) ₄ (10%), LiCl, BHT, dioxane, reflux, 5 h	MeO C ² C OMe (70)	589
MeO	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), P(2-furył) ₃ (8%), LiCl, CuI (10%), DMF, 80°, 2 h	MeO CH=C=CH ₂ (70)	276
MeO OSO2(CF2)2O(C	Bu ₃ Sn	Pd(PPh ₃) ₄ (7.5%), LiCl, DMF, 90°, 30 h	MeO. [(81)	29, 201
	Bu ₃ Sn	Pd(PPh ₃) ₄ (7.5%), LiCl, THF, 90°, 30 h	I (11) + (71)	29
MeO	Me ₄ Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	(85) MeO	19
	Me-Sn N	Pd(dppf)Cl ₂ , PhMe, 75°, 2 h	" (94)	41
	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%), dioxane, 80°	MeO OH (53)	233
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), PhMe, BHT, reflux, 24 h	MeO (76)	88
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 3 h	MeO CN (77)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	MeO OMe (68)	234
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C_6H_6 , 120°, 20 h	(96) MeO	3
		Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	MeO (51)	237, 240
		Pd(PPh ₃) ₄ , PhMe, 105°, 3 h	MeO (61)	41

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	n-Bu ⁻ Sn N	Pd(dppf)Cl ₂ , PhMe, 105°, 48 h	MeO Bu-n (64)	41
	Bu ₃ SnOMe	BnPd(PPh ₃) ₂ Cl, C ₆ H ₆ , 100°, 20 h	MeO (82)	305
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	MeO CO ₂ Et (47)	236
	OEt Bu ₃ Sn	 Pd(PPh₃)₂Cl₂ (1%), PhMe, 100°, 20 h H⁺ Pd(PPh₃)₂Cl₂ 	MeO (54)	269
	Bu ₃ Sn OEt	Et ₄ NCl, DMF, 80°, 1 h	MeO OEt (67)	272, 273
	Me ₃ Sn KN	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 12 h	MeO (85)	550, 551
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 110°, 15 h	MeO (63) E:Z = 50:50	534
	OTMS Me ₃ Sn	 Pd(PPh₃)₄, PhMe, 100° H⁺ 	MeO (75)	457
	Bu ₃ Sn CF ₃	Pd(PPh3)4 (1%), PhMe, 120°, 20 h	CF3 (61)	538
	OSnBu ₃	$Pd[P(o-Tol)_{3}]_{2}Cl_{2} (3\%),$ $C_{6}H_{6}$, reflux, 3 h	MeO (86)	241
	Me ₃ Sn	1. Pd(PPh ₃) ₄ , PhMe, 100° 2. H*	MeO TMS	457
	Bu ₃ Sn TMS	$Pd(PPh_{3})_{4}$. $C_{6}H_{6}$, 110°	MeO (75)	305
	Bu ₃ Sn OMe	1. Pd(PPh ₃)₄, C ₆ H ₆ , 110° 2. Bu₄NF, THF	McO (56)	532
	Bu ₃ Sn	$Pd(OAc)_2 (5\%),$ $PPh_3 (20\%),$ C_6H_6 , reflux, 1 d	MeO CO_2E1 (60) $E:Z = 1:3$	306, 427
	$Bu_3Sn \underbrace{CH(OEt)_2}_{E:Z} = 85:15$	Pd(PPh ₃) ₄ (2%), C ₆ H ₆ , 80°, 20 h	MeO CH(OEt) ₂ (55) E:Z = 85:15	539 5
	$\begin{bmatrix} OSnBu_3 \\ C_7H_{15}-n \end{bmatrix}$	Pd[P(o-Tol) ₃] ₂ Cl ₂ (3%), C ₆ H ₆ , reflux, 3 h	$McO = O C_7 H_{15} n (62)$	241
	Bu ₃ Sn N(TMS) ₂	 Pd(PPh₃)₄ (2%), PhMe, reflux, 48 h H⁺ 	MeO (78)	462, 464, 540
	OSnBu ₃	Pd[P(ο-Tol) ₃] ₂ Cl ₂ , PhMe, 100°, 20 h	p-MeOC ₆ H ₄	541
			(26) MeO (10)	\sim

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

 Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OMe	Pd(PPh ₃) ₄ (5%). DMF, 105°	<i>p</i> -MeOC ₆ H ₄ I (22) + OMe	378
			Ph OMe II (55)	
	u	Pd(CH ₃ CN) ₂ Cl ₂ (5%), AsPh ₃ , DMF, 105°	1 (25) + II (49)	378
		Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ , DMF, 105°	I (6) + O (60) OMe	378
	Bu ₃ Sn Ph OH	Pd(PPh ₃) ₄ (6%), DMF/HMPA (10:1), 70°, 24 h	$p-MeOC_6H_4 \xrightarrow{Ph} OH OH (61)$	287
	Bu ₃ Sn O OBn OBn	Pd(PPh ₃) ₄ (10%), PhMe, reflux 3 h	<i>p</i> -MeOC ₆ H ₄ O OBn (70)	423, 424
	Bu ₃ Sn O OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 2 h	<i>p</i> -MeOC ₆ H ₄ O OTBDMS (30) OTBDMS OTBDMS	299, 300
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	MeO (39)	90, 316
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	SPh (100) MeO	238
	$Bu_3SnSSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	MeO OMe (62)	316
	Me ₃ SnTMS	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	MeO (50)	547
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), PhMe, 120°, 40 h	SnMe ₃ (52)	548
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1.3-5%), PhMe, 115°, 15 h	MeO SnBu ₃ (81)	547, 548
MeO	Bu ₃ Sn-	BnPd(PPh ₃) ₂ Cl (1.5%), CH ₃ CN, rt, 5.75 h	MeO (52)	267
	Bu ₃ SnC≡COEt	$Pd(PPh_3)_2Cl_2 (5\%),$ $Et_4NCl, DMF, rt, 1.5 h$	MeO (60)	552
	CO ₂ Me Me ₃ Sn	Pd(PPh ₃) ₄ (10%), CuI (75%), DMF, rt, 48 h	MeO 0 (42)	246
	Ph ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	MeO (62)	437
	$Bu_3SnC\equiv CO_2Et$	$Pd(PPh_3)_2Cl_2 (5\%),$ $Et_4NCl, ZnCl_2,$ DMF, rt, 1.5 h	MeO C ² CO ₂ Et (0)	552
	Me ₃ SnPh	Pd/C (0.5%), AsPh ₃ (20%), Cul (10%), NMP, 100°, 21 min	MeO Ph (88)	461, 33, 590

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), LiCl, BHT, dioxane 98°, 6.5 h	MeO (74)	189
MeO	Bu ₃ Sn	Pd(PPh ₃) ₄ (7.5%), LiCl, DMF, 90°, 30 h	MeO (58)	29, 201
MeO	Bu ₃ Sn	Pd(OAc) ₂ , DMF, reflux	MeO \sim	558
	Ph ₄ Sn	Pd(OAc) ₂ , DMF, reflux	MeO Ph (49)	558
Br OH	Bu ₃ Sn O	Pd(OAc) ₂ (10%), P(o-Tol) ₃ (20%), NEt ₃ , CH ₃ CN, reflux	(35) + 0 (12) OH	54
	Bu ₃ Sn O O Ph	Pd(PPh3)4 (10%), PhMe, reflux	OH O OPh OPh OPh OPh OPh	423
ЮН	Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (5%), CuI (7-10%), DMF, rt		12
	Bu ₃ Sn <i>i</i> -PrO O	BnPd(PPh ₃) ₂ Cl (5%), Cuł (7-10%), DMF, rt	OH 0 (57) 0 0 0 0	12
	Bu ₃ Sn O O	Pd(dba) ₂ , Bu ₄ NI, DMF, 80°, 16 h		382
OTf	Bu ₃ SnC≡CH	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 4 h	$\langle O \\ O \\ O \\ O \\ C \\ C \\ C \\ C \\ C \\ C \\$	189
	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), P(2-furyl) ₃ (8%), LiCl, CuI (10%), DMF, 80°, 2 h	$\bigvee_{O}^{O} \xrightarrow{CH=C=CH_2} (24)$	276
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 4 h	$ \underbrace{\bigcirc}_{(61)}^{O} \underbrace{\bigcirc}_{(23)}^{O} \underbrace{O} \underbrace{\bigcirc}_{(23)}^{O} \underbrace{O} \underbrace{O} \underbrace{O} \underbrace{O} \underbrace{O} \underbrace{O} \underbrace{O} \underbrace$	189
ОН	Me ₃ Sn	PdCl ₂ (5%), dioxane, 105°	MeO OH (44)	471
Br	Cl ₃ SnPh	PdCl ₂ (0.8%), KOH, H ₂ O, 100°, 3 h	HO ₂ C Ph (88)	282
2° l	Br ₃ SnMe	PdCl ₂ (0.8%), KOH, H ₂ O, 100°, 6 h	HO ₂ C (98)	282
	Cl ₃ Sn CO ₂ H	PdCl ₂ (1.6%), PPh ₂ (C ₆ H ₄ SO ₃ Na- <i>m</i>) (6 KOH, H ₂ O, 100°, 3 h	HO ₂ C, .4%), (71)	282
	Cl ₃ SnPh	PdCl ₂ (0.8%), KOH, H ₂ O, 25°, 2 h	HO ₂ C Ph (83)	282

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	MOMO	Pd(PPh ₃) ₄ , PhMe, 105°, 3 h	Me ₂ N OMOM (80)	41
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ , Et ₄ NCl, DMF, 80°, 18 h	Me ₂ N OEt (22)	272, 273
	Bu_3SnNEt_2	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	Me ₂ N (36)	90, 316
	$\begin{bmatrix} Bn \\ Bu_3Sn - N \\ Me \end{bmatrix}$	Pd[P(o-Tol) ₃] ₂ Cl ₂ (2%), PhMe, 105°	$Me_2N - N - N - N - (81) Me$	91
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	Me ₂ N (0)	547
le ₂ N	Bu ₃ SnC≡COEt	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, 50°, 12 h	Me_2N (0)	302
H ₂ Br	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe, 95°, 48 h	NH ₂ SnBu ₃ (78)	592
Br	Bu ₃ SnC≡C−−∕ ^{OMe}	Pd(PPh ₃) ₄ (3%), PhMe, 100°, 3.5 h	C ² COMe (60) NHAc	591
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (1%), dioxane, 100°, 4 h	OEt (72) NHAC	273
	$Bu_3SnC \equiv CR$	Pd(PPh ₃) ₄ (3%), PhMe, 100°, 2.5 h	R = Pr-n (77) $R = Pr-i (68)$	591
	Bu₃SnC≡C	Pd(PPh ₃) ₄ (3%), PhMe, 100°, 4.5 h	OMe (51) NHAC R	591
	Bu₃SnC≡CR	Pd(PPh ₃) ₄ (3%), PhMe, 100°, 1.8-6 h	$ \begin{array}{ccccc} C \in CR & TMS & (88) \\ & Bu-n & (84) \\ & Ph & (94) \\ & CH_2OTHP & (76) \\ & (CH_2)_2OTBDMS & (53) \end{array} $	591
I NHAC	Bu ₃ Sn Cl N Cl	Pd(PPh ₃) ₄ , CuI, dioxane, reflux	CI N CI (81) NHAC TMS	582
AcHN	Bu ₃ Sn TMS	Pd(PPh ₃)4, C ₆ H ₆ , 110°	AcHN (73)	305, 532
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ , Et ₄ NCl, DMF, 80°, 18 h	AcHN OEt (71)	272, 273
AcHN	Bu₃SnC≡COEt	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, 50°, 2 h	AcHN (0)	302
ON	Bu ₃ Sn OMe	Pd(PPh3)4 (5%), Cul (8%), LiCl, NMP, 70°, 48 h	OMe OMe (77)	575

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	0.5		Cl V Cl	
O ₂ N NHAc		Pd(PPh ₃) ₄ , CuI, dioxane, reflux	(81)	582
Br	Bu ₃ Sn	Pd ₂ (dba) ₃ (2%), P(2-furyl) ₃ (4%), LiCl, NMP, rt, 2 h	$O_2 N$ $O_2 $	40
	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe, 80°	SnBu ₃ (25)	310
Br	Me₄Sn	Pd(PPh ₃) ₄ (0.7%), air, HMPA, 65°	(95) O	19
	Bu ₃ Sn OH	Pd(PPh ₃) ₄ (5%). dioxane, 80°	OH (0)	233
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), BHT, PhMe, reflux, 4 h	(82)	88
	Bu ₃ Sn CN	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), <i>m</i> -xylene, 120°, 20 h	CN (tr)	235
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (1%), HMPA, 80°, 20 h	OMe (64)	234
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	(98)	3
	OSnBu ₃	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 5 h	0 (64)	240
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 12 h	0 N (100)	550
	Bu ₃ Sn CO ₂ Et	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), ZnBr ₂ , DMF, 80°, 5 h	CO ₂ Et (22)	236
	Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 20 h 2. H ⁺	(89)	269
	Me ₃ Sn N	$\begin{array}{l} Pd(PPh_{3})_{4} \ (5\%),\\ C_{6}H_{6}, \ reflux, \ 12 \ h \end{array}$	(90-93)	550, 551
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(89)	538

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(98)	538
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(90)	538
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 115°, 15 h	OEt (55) E:Z = 63:37	534
	OSnBu ₃	$\label{eq:pd_pd_pd_pd_s} \begin{split} & \operatorname{Pd}[\operatorname{P}(\textit{o-Tol})_3]_2 \mathrm{Cl}_2 \ (3\%), \\ & \operatorname{C}_6 \mathrm{H}_6, \ \mathrm{reflux}, \ 3 \ \mathrm{h} \end{split}$	(70)	241
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 21 h	CO_2Et (60) $E:Z = 1:3$	306
	$\frac{Bu_3Sn}{E:Z=85:15}$	Pd(PPh ₃) ₄ (2%), C ₆ H ₆ , 80°, 20 h	$CH(OEt)_2$ (78) E:Z = 85:15	539
	Bu ₃ Sn N(TMS) ₂	1. Pd(PPh ₃) ₄ (2%) PhMe, reflux, 48 h 2. H ⁺	NH ₂ (30)	540
	MeO ₂ C Bu ₃ Sn H	Pd(PPh ₃) ₄ , NEt ₃ , CH ₃ CN, 100°, 12 h	$O \xrightarrow{MeO_2C} (\geq 81)$	290
	Bu ₃ Sn	Pd(PPh ₃)₄ (0.7%). DMF, 90°, 24 h	$ \begin{array}{c} & & \\ & & $	289
	Bu ₃ Sn Ph OH	Pd(PPh ₃) ₄ , 75°, 2 h	O Ph Ph OH (61)	432
	Bu ₃ Sn SnBu ₃	 Pd(PPh₃)₄, PhMe, 100° Br₂, CCl₄ 	0 Br (69)	279
	Bu ₃ Sn O O	Pd(PPh ₃) ₄ (5%), HMPA, 80°, 20 h		287, 546
	Bu_3SnNEt_2	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%). PhMe, 100°, 3 h	NEt ₂ (16)	90, 316
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (1%), PhMe. 120°, 20 h	SPh (67)	318

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Pro duct(s) and Yield(s) (%)	Refs.
	Bu ₃ SnSSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	(52)	318
	R ₃ SnSnR ₃	Pd(PPh ₃) ₄ (1.3%), PhMe, 115°, 15 h	R = Me (56) $R = Bu (57)$	547, 310
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 70°, 10 min	(96)	553, 461
	Bu ₃ Sn	Pd(PPh ₃) ₄ , THF, 65°, 1 h	(66)	264
	Bu ₃ Sn	Pd(PPh ₃₎₄ (10%), CuI (75%), DMF, rt, 12 h	(78)	246
	Cl ₃ SnPh	PdCl ₂ (0.8%), KOH, PPh ₂ (C ₆ H ₄ SO ₃ Na-m) (1.6%), H ₂ O, 100°, 3 h	Ph I (80)	282
	Me ₃ SnPh	PhPd(PPh ₃) ₂ I (2%), HMPA, 70°, 30 min	I (76) + Ph-Ph (24)	463
	Bu ₃ Sn	Pd/C (5%), CuI (10%), AsPh3 (20%), NMP, 80°, 24 h) 0 5 (60)	461
	$Me_3SnSnMe_3$	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 15 min	SnMe ₃ (95)	312
	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₄ (1%), PhMe, 60°, 72 h	SnBu ₃ (83)	311
$N_2^+ BF_4^-$	Ph Bu ₃ Sn	Pd(dba) ₂ (5%), CH ₃ CN, Et ₂ O, rt, 1h	O (80) $E:Z = 17:83$	249
OSO ₂ F	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, DMF, 25°, 6-18 h	(70) O	203
OTf	Me₄Sn	Pd(PPh ₃)₄ (2%), LiCl, BHT, dioxane, 100°, 16 h	(75)	189
	Me ₄ Sn	Pd ₂ (dba) ₃ (1%), LiCl, AsPh ₃ (8%), NMP, 60°	" (>95)	11
	Bu ₃ Sn	Pd(PPh ₃)4 (2%), BHT, LiCl, dioxane, 98°, 4 h	U (95)	189
	10 10 10	$Pd_2(dba)_3 (1\%), LiCl,$ $L (8\%), NMP, 35^{\circ}$ $L = PPh_3$ $L = P(2-furyl)_3$ $L = AsPh_3$	I (>95) I (95) I (>95)	11 11, 40 11

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			F	
	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, THF, 65°, 1 h	(65)	264
	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), P(2-furyl) ₃ (8%), LiCl, CuI (8%), DMF, 80°, 1 h	O CH=C=CH ₂ (60)	276
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 43 h	\rightarrow	189
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), LiCl, NMP, rt, 2 h	I (78)	11
	Bu ₃ Sn $E:Z = 2:1$	Pd(PPh ₃₎₄ (2%), LiCl, BHT, dioxane, 98°, 31 h	$\begin{array}{c} & & \\$	189
			$ \begin{array}{c} & & \\ & & $	
	Bu ₄ Sn	Pd ₂ (dba) ₃ (1%), AsPh ₃ (12%), LiCl, NMP, 80°	I + II + III (11) I:II:III = 65:20:15 I (>98)	30, 189
	Me ₃ Sn ^{TMS}	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 65 h	(83)	189
	Me ₃ SnPh	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 98°, 23 h	Ph I (85)	189
	Me ₃ SnPh	Pd(PPh ₃) ₄ (2%), LiCl, BHT, DMF, 90°, 1 h	1 (54) + II (16)	189
	Me ₃ SnPh	Pd ₂ (dba) ₃ (1%), LiCl, AsPh ₃ (8%), NMP, 80°	$\mathbf{I} (54) + \mathbf{\Pi} (21)$	30
	Bu ₃ SnPh	Pd ₂ (dba) ₃ (1%), LiCl, PPh ₃ (8%), dioxane, 65°, 40 h	$\mathbf{I} (81) + \mathbf{III} (2)$	189
	Bu ₃ SnPh	Pd ₂ (dba) ₃ (1%), AsPh ₃ (8%), NMP, 65°, 40 h	\mathbf{I} (81) + \mathbf{III} (1)	30
	Bu ₃ SnPh	Pd ₂ (dba) ₃ (1%), LiCl, AsPh ₃ (8%), NMP, 65°, 40 h	I (92) + III (6)	30
	Bu ₃ SnR	Pd ₂ (dba) ₃ (1%), LiCl, AsPh ₃ (8%), NMP, 80°		30
	$\frac{K}{p\text{-}CF_3C_6H_4}$ o-OHCC ₆ H ₄ o-MeOC ₆ H ₄ p-MeOC ₆ H ₄ o-CH ₂ OH		I (89) + II (9) I (72) + II (4) I (88) + II (10) I (92) + II (7) I (50) + II (24)	
	<i>p</i> -CH ₂ OH <i>o</i> -EtC ₆ H ₄		I (76) + II (6) I (46) + II (27)	

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Br	Bu ₃ Sn O	Pd(OAc) ₂ , NEt ₃ , CH ₃ CN	(71) OH	54
Br CO ₂ Me	Bu ₃ Sn O OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 15 h	MeO ₂ C OTBDMS (48) OTBDMS OTBDMS	300
CO ₂ Me	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), THF, 65°, 2 h	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	267
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1-2%), PhMe, reflux	O CO ₂ Me (72)	261
	Bu ₃ Sn O O	Pd(PPh ₃) ₂ Cl ₂ (1-2%), PhMe, reflux	(65) CO ₂ Me	261
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (0.5%), THF, reflux, 20 h	(81) CO ₂ Me	286
		BnPd(PPh ₃) ₂ Cl (5%), Cul (7-10%), DMF, rt	0 (70) MeO ₂ C 0	12
	Bu ₃ Sn <i>i</i> -PrO O	BnPd(PPh ₃) ₂ Cl (5%), CuI (7-10%), DMF, rt	CO_2Me O (68) $i \cdot PrO$ O	12
	Me ₃ SnSnMe ₃	$[(\eta^{3}-C_{3}H_{5})PdCI]_{2}, CH_{2}Cl_{2}, 20^{\circ}$	$\bigcup_{i}^{SnMe_3} (62)$	557, 57
OTf CO ₂ Me	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), LiCl, P(2-furyl) ₃ (8%), CuI (7%), DMF, 80°, 1.5 h	$CH=C=CH_2 (71)$ CO_2Me	276
TI(O ₂ CCF ₃) ₂ CO ₂ Me	Me ₄ Sn	Pd(OAc) ₂ , DMF, reflux	(38) CO ₂ Me	558
MeO ₂ C	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₄ (1%), PhMe, reflux, 15 h	MeO ₂ C SnBu ₃ (89)	593
MeO ₂ C	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), PhMe, 120°, 20 h	MeO_2C (98)	538
	OTMS Me ₃ Sn	 Pd(PPh₃)₄, PhMe, 100° H⁺ 	MeO ₂ C (42)	457
	Me ₃ Sn	1. Pd(PPh ₃) ₄ , PhMe, 100° 2. H ⁺	MeO ₂ C (40)	457
	TMS Bu ₃ Sn OMe	Pd(PPh ₃) ₄ , C ₆ H ₆ , 110°	McOrC (71)	305

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OMe	1. Pd(PPh ₃) ₄ , C ₆ H ₆ , 110° 2. Bu ₄ NF, THF	MeO ₂ C (82)	532
	Bu ₃ Sn O OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 15 h	MeO ₂ C OTBDMS (56) OTBDMS	299, 300
MeO ₂ C	Me ₃ Sn O	Pd(PPh3)2Cl2 (0.5%), THF, reflux, 20 h	(73) MeO ₂ C	286
	CO ₂ Me Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), CuI (75%), DMF. rt, 12 h	MeO ₂ C (78)	246
	Me ₃ Sn S	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 70°, 20 min	MeO ₂ C (98)	553
	Me ₃ Sn N	Pd(PPh ₃) ₂ Cl ₂ (0.5%), THF, reflux, 20 h	MeO ₂ C (95)	286
	Bu₃SnC≡CCO₂Et	$Pd(PPh_3)_2Cl_2 (1\%),$ $Et_4NCl, ZnCl_2,$ $C_6H_6, rt, 48 h$	MeO ₂ C (6)	552
	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF. 20°. 5 h	Ph I (97) MeO ₂ C	553
	Me ₃ SnPh	PhPd(PPh ₃) ₂ I (2%), HMPA, 70°, 30 min	I (74) + Ph-Ph (21)	463
	$Ph_3C \sim N \sim X$ TMS	Pd(PPh ₃) ₂ Cl ₂ , DMF, heat	$Ph_{3}C \sim N \xrightarrow{N} X = 0 (56)$ $Ph_{3}C \sim N \xrightarrow{N} X = N X = S (61)$	584
	Me ₃ SnSnMe ₃	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, 20°, 15 min	MeO ₂ C (97)	312
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, reflux, 55 min	MeO ₂ C SnBu ₃ I (75)	594
	$Bu_3SnSnBu_3$	Pd(CH ₃ CN) ₂ Cl ₂ (2%). HMPA, 20°, 10 min	I (92)	313
	$Bu_3SnSnBu_3$	NiBr ₂ (10%), HMPA, 135°, 7 h	I (72)	566
MeO ₂ C OTf	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (5%), AsPh ₃ (10%), DMF, 60°, 4h	$\sum_{Ts} N $ (80)	291
	Bu ₃ Sn \swarrow Bu-n SEM	Pd(PPh ₃) ₄ (2%), LiCl, BHT, dioxane, 100°, 3.5 h	MeO ₂ C SEM (60)	433
Br	Bu ₃ Sn O OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 2 h	OAc OTBDMS (40)	299, 300

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Aco	Bu ₃ Sn	Pd(PPh ₃)4 (3%), BHT, PhMe, reflux, 8 h	Ac0 (62)	88
Aco	Bu ₃ Sn S	$Pd(PPh_3)_2Cl_2 (0.5\%),$ THF, reflux	Ac0 (65)	286
CHO OTf OMe	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	(0) + (0)	190
Br	Bu ₃ Sn O ^N	Pd(PPh ₃) ₂ Cl ₂ (1%), dioxane, reflux, 4 h	OMOM (68)	530
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (1%), dioxane, 100°, 5 h	OHOM OEt (79)	530
MeO Br OMe	Bu ₃ Sn O OTBDMS OTBDMS OTBDMS	Pd(PPh ₃) ₂ Cl ₂ , PhMe, 100°, 1 h	OTBDMS (65)	299, 300
OMe OTf OMe	Me₄Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	OMe (92) OMe	190, 376
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	OMe OMe OMe (85)	190, 376
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	OMe (84)	190, 379
	Bu ₄ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	$\bigcup_{\substack{\mathbf{OMe}\\\mathbf{OMe}\\\mathbf{OMe}}}^{\mathbf{OMe}} (0) + \bigcup_{\substack{\mathbf{OMe}\\\mathbf{OMe}}}^{\mathbf{OMe}} (86)$	190, 379
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	OMe Ph OMe (74)	190, 379
	MeO Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-20%), PPh ₃ (15-20%), LiCl, CuBr (20%), DMF, reflux	MeO MeO OMe (49)	191, 190
	Bu₃SnC≡CPh	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	OMe C [≥] CPh OMe (50)	190, 379
MeO Br MeO	Bu ₃ Sn CO ₂ Bu-t	Pd(PPh ₃) ₄ , THF	$MeO \xrightarrow{H} CO_2Bu-t$	595
CO:H	Br ₃ SnMe	PdCl ₂ (0.8%), KOH, H ₂ O, 100°, 3 h	CO ₂ H (98)	282

TABLE IIL DIRECT	CROSS-COUPLING OF	FARYL ELECTROPHILES (Continued)
	0000 0001 0110 0		conninaca

T	ABLE III. DIRECT CROSS-	COUPLING OF ARYL E	ELECTROPHILES (Continued)	
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnNEt ₂	Pd[P(o-Tol) ₃] ₂ Cl ₂ (1%), PhMe, 100°, 3 h	NEt ₂ (38)	90
	Bu ₃ SnH	Pd(PPh ₃) ₄ (2%), C ₆ H ₆ , 25°, 5 h	(94)	48
	Bu ₃ Sn N Ts'	Pd ₂ (dba) ₃ (5%), AsPh ₃ (10%), Cul (10%), DMF, 60°, 5 h		291
	BnOO SnBu ₃	Pd ₂ (dba) ₃ (2%), DMF, rt, 6 h	Bn0 (45)	439
	$Et_3SnSSnEt_3$	PhPd(PPh ₃) ₂ I (5%), DMSO, 100°, 4 h	S-S-(98)	320
OSO ₂ F	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, DMF, 25°, 6-18 h	(91)	203
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, DMF, 25°, 6-18 h	(69)	203
OTF	Bu ₃ SnH	Pd(dba) ₂ (5%), PPh ₃ (10%), LiCl, THF, 60°, 16 h	(78)	192
	Bu ₃ Sn	Pd(dba) ₂ (5%), PPh ₃ (10%), LiCl, THF, 60°, 16 h	(65) OH	192
	Bu ₃ Sn OH	Pd(PPh ₃) ₂ Cl ₂ (2%), LiCl, BHT, DMF, 60°, 3 h	(82)	189
	Bu ₃ Sn OH	Pd(PPh ₃) ₂ Cl ₂ (2%), LiCl, BHT, DMF, 60°, 6 h	OH (62)	189
	Me ₃ SnPh	Pd(dba) ₂ (5%), PPh ₃ (10%), LiCl, THF, 60°, 16 h	Ph (68)	192
	Bu₃SnC≡CPh	Pd(dba) ₂ (5%), PPh ₃ (10%), LiCl, THF, 60°, 16 h	(75) −C≡CPh	192
	Bu ₃ Sn Ph	Pd(dba) ₂ (5%), PPh ₃ (10%), LiCl, THF, 60°, 16 h	Ph (61)	192

TABLE III. DIRECT	CROSS-COUPLING OF A	ARYL ELECTROPHILE	S (Continued)

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Cip	Bu ₃ SnOTBDMS	Pd(PPh ₃) ₄ (2%), PhMe, 100°, 2 h	OHC OMOM OMOM	605
BF4-	Me₄Sn	Pd(OAc) ₂ (2%), DMF, 60-20°, 1 h	(65)	206
Ph OTf	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), P(2-furyl) ₃ (8%), LiCl, Cul (8%), DMF, 80°, 5 h	$CH=C=CH_2 (20)$	276
Ph	Bu ₃ Sn OBu-r	BnPd(PPh ₃) ₂ Cl, DMF, 70°, 16 h	Ph OBu-t (93)	296
	Me ₃ Sn OH	Pd(PPh3)4, PhMe, 110°, 3 h	Ph OH TBDMS (70)	371
Ph	Bu ₃ SnCH=C=CH ₂	Pd ₂ (dba) ₃ (2%), P(2-furyl) ₃ (8%), LiCl, Cul (8%), DMF, 80°, 5 h	Ph CH=C=CH ₂ (31)	276
Br Br Ph	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (4%), PhMe, 110-120°, 4 h	$Me_{3}Sn \underbrace{\qquad SnMe_{3}}_{Ph} (90)$	606
Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (0.7%), DMF, 110°, 5 h	N (97) SEM	289
TBDMSO	Bu ₃ Sn BocHN	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, 90°, 25 h	TBDMSO (65)	564
MeO MeO	Me ₃ Sn CO ₂ Me	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, 105°, overnight	MeO MeO MeO (46)	607
F S O Br	Bu ₃ Sn	Pd(OAc) ₂ (5%), dppp (5.5%), LiCl, DMF, 90°, 19 h	F (50)	202
O ₂ N CONE ₁₂	Bu ₃ Sn TMS F	Pd(PPh ₃) ₂ Cl ₂ , THF, reflux, 20 h	O ₂ N (74) CONEt ₂	263
McO	Me₄Sn	Pd(PPh ₃) ₂ Cl ₂ (20%), DMF, 120°, 8 h	MeO (49)	608
TfO O	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, dioxane, 90-95°, 2.5-4 h	0 (74) 0	370

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₄ Sn	Pd(dppf)Cl ₂ , LiCl, DMF, 90-95°, 2.5-4 h	$n-\mathrm{Bu} \xrightarrow{O}_{O} \qquad \qquad$	370
	Me ₃ SnPh	Pd(dppf)Cl ₂ , LiCl, DMF, 90-95°, 2.5-4 h	Ph Ph (67)	370
BzO	Bu₃SnC≡CSnBu₃	Pd(PPh ₃) ₄ (10%), LiCl, BHT, dioxane, reflux, 5 h	$C \equiv C - C \equiv C - C = $	589
O OH OTf	Bu ₃ Sn	Pd(dppf)Cl ₂ , LiCl, DMF, 90-9 5°, 2 h	о он (70) О (70)	370
	Me ₃ SnPh	Pd(dppf)Cl ₂ , LiCl, DMF, 90-95°, 2.5 h	O OH Ph I (56) +	370
			(28)	
	Bu ₃ SnPh	Pd(dppf)Cl ₂ , LiCl, DMF, 90-95°, 3 h	I (56) + O OH $Bu-n$ (14)	370
	Bu ₃ SnSnBu ₃	Pd(dppf)Cl ₂ , LiCl. DMF, 90-95°, 17 h	O OH (93) O	370
	Bu ₄ Sn	Pd(dppf)Cl ₂ , LiCl, DMF, 90-95°, 20 h	о он Ви-л (97)	370
Br CO ₂ Me	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ , PhMe, 100°	$\int_{0}^{\infty} \frac{\text{SnBu}_{3}}{\text{CO}_{2}\text{Me}} $ (257)	500
O OH O OH O OH	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, dioxane, 90-95°, 1 h	O OH O OH O OH (70)	370
	${\operatorname{Bu}}_4{\operatorname{Sn}}$	Pd(PPh ₃) ₂ Cl ₂ , LiCl, DMF, 90-95° , 2.5 h	O OH Bu-n (74)	370

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ Sn O	Pd(PPh ₃) ₄ , LiCl, dioxane, 90-95°, 8.5 h	О ОН (100)	370
		Bu ₃ SnPh	Pd(PPh ₃) ₄ , LiCl. dioxane, 90-95°, 17 h	O OH O OH Ph (80) O OH	370
C		Bu ₃ Sn Yrh	Pd(PPh ₃) ₄ , LiCl, dioxane, 90-95°, 2 h	O OH Ph O OH (100)	370
C ₁₃	HLO C	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (30-40%), LiCl, CuBr, DMF, reflux	F (93)	191
		Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (30-40%), LiCl, CuBr, DMF, reflux	(62)	191
		OMe Bu ₃ Sn MeO	Pd(PPh ₃) ₂ Cl ₂ (10-15%), AsPh ₃ (30-40%), LiCl, CuBr. DMF. reflux	MeO (21) OMe	191
	Br Br NHTs	Bu ₃ Sn	Pd(PPh3)4 (2%), PhMe, reflux	NHTs (52)	89
	Br NHTs	Bu3Sn	Pd(PPh3)4 (2%), PhMe, reflux	NHTs (50)	89
	Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), PhMe, reflux	(82) NHTs	89
	OMe EtO ₂ C MeO Cl	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10-15%), PPh ₃ (40%), LiCl, DMF, reflux	$HeO \longrightarrow OMe OMe OMe OMe OH $	190
	OTf	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, BHT, DMF, rt, 4 h	(40)	189
	NHTs	Bu ₃ Sn TMS	Pd(PPh ₃) ₄ (2%), LiCl, BHT, DMF, dioxane, 98°, 11 h	NHTs NHTs (81)	189
	TsHN	Bu ₃ Sn OTHP E:Z = 7:1	Pd(PPh ₃) ₄ (2%), LiCl, BHT, DMF, dioxane, 98°, 12 h	TsHN (72) <i>E</i> : <i>Z</i> = 3:1	189

ABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Contin	ued)
---	------

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

 $\mathbf{R} = \mathbf{OSO}_2(\mathbf{CF}_2)_2\mathbf{O}(\mathbf{CF}_2)_2\mathbf{H}$

TABLE III. DIRECT CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C_{11} Bu_3Sn O H O	Pd(PPh ₃) ₄ (4.9%). THF, reflux, 20 h		644
C_{12} Br Br + Me ₃ SnSnMe ₃	Pd(OAc) ₂ (10%), PPh ₃ (20%), PhMe, 110°, 18 h	(90)	645
O O O A SnBu ₃	Pd(PPh ₃) ₄ (3%), syringe pump, PhMe, 105°, 5.5 h		646
X + Me ₃ SnSnMe ₃ X = Br X = 1 E:Z = 12:88	Pd(PPh ₃) ₄ (5-20%), dioxane, 100-105°, 24 h	(97) (87)	647
Br SnMe ₃	Pd(PPh ₃) ₄	I (78)	647
Br Br $+$ $Me_3SnSnMe_3$	Pd(PPh ₃) ₄ (5-20%), dioxane, 100-105°, 24 h	I (82)	647

TABLE IV. INTRAMOLECULAR CROSS-COUPLING OF ARYL ELECTROPHILES

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
OTF OTF + Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5-20%), dioxane, LiCł, 100-105°, 24 h	I (95)	647
$X \rightarrow H X$ $H \rightarrow H Me_3SnSnMe_3$ X = Br	Pd(PPh ₃) ₄ (5-20%), dioxane, 100-105°, 24 h		647
$X = I$ OTf OH OH $+ Me_3SnSnMe_3$	Pd(PPh ₃)4 (5-20%), dioxane, LiCl, 100-105°, 24 h	I (87) I (88)	647
C ₁₅ O Br SnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (2.2%), PPh ₃ (8.8%), PhMe, reflux, 2 h	(70) $E:Z = 1.5:1$	648
	Pd(PPh ₃) ₄ (3%), syringe pump, PhMe, 105°, 5.5 h		646
	Pd(PPh ₃) ₂ Cl ₂ (2-3%), LiCl, DMF, 60°, 69 h	I (22)	646
C_{16} Br + Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, Li ₂ CO ₃ , PhMe, reflux, 12 h	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	563
N + Me ₃ SnSnMe ₃	Pd(0), xylene, 140°, 24 h	I (60)	645
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	Pd(PPh ₃) ₂ Cl ₂ (2.2%), PPh ₃ (8.8%), PhMe, reflux, 2 h	$\bigcup_{0}^{O} \bigoplus_{Ph} (58) E:Z=1.1:1$	648
MeO Br SnBu ₃	Pd(PPh ₃) ₄ (5%), 2,6-di-tert-butylphenoł, PhMe, reflux, 4.5 h	MeO OH (45)	648
O O O O O O O O O O	Pd(PPh ₃) ₄ (3%), syringe pump, PhMe, 105°, 5.5 h	0 I (67)	646
	Pd(PPh ₃) ₂ Cl ₂ (2-3%), LiCl, DMF, 70°, 72 h	1 (<5)	646

TABLE IV. INTRAMOLECULAR CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

TABLE IV. INTRAMOLECULAR CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

TABLE IV. INTRAMOLECULAR CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C4	⟨Br	Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), Cl(CH ₂) ₂ Cl, reflux, 4.5 h	$\bigvee_{O}^{N} \bigvee_{N}^{SMe} (89)$	651
	Br	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux		437
		Me ₃ Sn O	$Pd(PPh_3)_4 (5\%),$ $C_6H_6, 80^\circ, 18 h$		550, 551
		Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), Cl(CH ₂) ₂ Cl, reflux, 10 h	N SMe N (72)	651
	Br O Br	Bu ₃ Sn O	Pd(PPh3)4 (5%), PhMe, reflux	0 (48)	100
6		SnMe ₃	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h		560, 561
С <u>5</u>	OHC O Br	Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, 80°, 3 h	OHC O N SMe (82)	458

TABLE V. DIRECT CROSS-COUPLING OF FURAN AND BENZOFURAN ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs
	Bu ₃ Sn N N SMe	$\label{eq:Pd} \begin{array}{l} Pd(PPh_3)_2Cl_2 \ (3\%),\\ Cl(CH_2)_2Cl,\\ reflux, \ 4.5 \ h \end{array}$	OHC O (100)	651
HO ₂ C O Br	Cl ₃ SnPh	PdCl ₂ , PPh(C ₆ H ₄ SO ₃ Na- m) ₂ , aq. KOH, 90°	HO_2C O Ph (96)	281
AcO	Bu ₃ Sn N N SMe	$Pd(PPh_3)_2Cl_2 (3\%),$ $Cl(CH_2)_2Cl,$ reflux, 4 h	Aco N (82)	651
I			<i>n</i> -C ₈ H ₁₇	
OTF CO ₂ Me	Bu ₃ Sn C ₈ H ₁₇ -n	Pd(PPh ₃) ₄ , LiCl, THF, 50-60°, 2.5 h	(50)	652
	Bu ₃ Sn	Pd(PPh ₃) ₄ , LiCl, THF, 50-60°, 2.5 h	$\begin{array}{c} C_{10}H_{21} \cdot n \\ CO_2Me \end{array} $ (50)	652
O Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), PhMe, reflux, 3 h	(97)	653
CO ₂ Et			CO ₂ Et	
<i>n</i> -C ₅ H ₁₁ -	Bu ₃ Sn' 🚿	Pd(0)	$n-C_5H_{11}$ (80)	654
	Bu ₃ Sn O	Pd(0)	$n-C_5H_{11}$ (75)	654
² TBDMSO- NEt H	Bu3SnSnBu3	Pd(OAc) ₂ (10%) NEt ₃ , 100°, 2.5 h	TBDMSO- NEt H SnBu ₃ (43)	653
O	I			
MeO	Bu ₃ Sn	LiCl, DMF, 105°, 24 h	MeO H O OBn (65)	655
	Bu ₃ Sn	Pd(PPh ₃) ₄ (2.8%), LiCl, DMF 100°, 2 h	MeO (98)	656
				657, 65
	Me ₄ Sn	Pd(PPh ₃) ₂ Cl ₂ (10%),	<u>R</u> (14)	
	Bu ₃ Sn	DMF, 60°, 1 h	CH ₂ =CH (37)	
	Ph₄Sn	Pd(PPh_)_Cl_ (10%).	Ph (39)	

dioxane, 100°, 24 h

TABLE V. DIRECT CROSS-COUPLING OF FURAN AND BENZOFURAN ELECTROPHILES (Contin
--

TABLE V. DIRECT CROSS-COUPLING OF FURAN AND BENZOFURAN ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈	Br	Me ₃ Sn O OBu-1	BnPd(PPh ₃) ₂ Cl (1.7%), DMF, 70°, 16 h	<i>r</i> -BuO O (60)	296
		Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°	(65)	289
C9	Br N Boc	N Boc	$\begin{array}{l} Pd(PPh_3)_4 \ (2\%),\\ C_6H_6, aq. \ Na_2CO_3,\\ reflux, \ 2 \ d \end{array}$	$ \begin{array}{c c} SEM \\ N \\ N \\ Boc Boc Boc Boc \end{array} $ (50)	659
	CHO Br H	Me₄Sn	Pd(OAc) ₂ , Bu ₄ NCl	CHO N H (39)	109
		Bu ₃ Sn CO ₂ Me	Pd(OAc) ₂ , Bu₄NCl	CHO N H CUO	109
		Me ₃ Sn N	Pd(OAc) ₂ , Bu ₄ NCl	H (5)	109
		Me ₃ Sn	Pd(OAc) ₂ , Bu ₄ NCI		109
		Bu ₃ Sn	Pd(OAc) ₂ , Bu ₄ NCl	CHO OH N H (87)	109

TABLE VI. DIRECT CROSS-COUPLING OF PYRROLE AND INDOLE ELECTROPHILES

TABLE VI. DIRECT CROSS-COUPLING OF PYRROLE AND INDOLE ELECTROPHILES (Continue

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Pd(dppf)Cl ₂ , NaOAc, DMF, 120°, 100 min	CO_2Et (60) Ts	664
	$\begin{bmatrix} Bu_3 Sn & Pr-n \end{bmatrix}$	Pd(dppf)Cl ₂ , DMF, 120°, 100 min	CO_2Et I (72)	664
	Bu ₃ Sn	Pd(dppf)Cl ₂ , DMF, 120°, 110 min	CO_2Et (43) Ts	664
	Bu ₃ Sn Ph	Pd(dppf)Cl ₂ , DMF, 120°, 35 min	$ \begin{array}{c} $	664
^	Bu ₃ Sn Ph	Pd(dppf)Cl ₂ , DMF, 120°, 150 min	CO_2Et (73) Ts	664
MeO MeO OTf Boc	Bu ₃ SnPh	 Pd(PPh₃)₄ (5%), LiCl, dioxane, 94°. 38 h 150°, 6 h 	MeO MeO Ph (63)	665
C ₂₃ MeO ₂ C Me H H H H H H H H H H H H H H H H H H H	Bu ₃ Sn-V	Pd(PPh ₃) ₄ (10%), DMF, 110°	$MeO_{2}C$ H	289
$O = NMe_2$ $O = NMe_2$ Br $O = N$ S S	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (7%). PhMe, reflux, 7 h	$O \bigvee_{NMe_2} NMe_3$ $O \bigvee_{Boc} (85)$ $O \bigvee_{S} V$	666
$Br\left(\begin{array}{c} \\ N \\ N \\ Boc \\ Boc \\ n \end{array} \right) Br$	N SnBu ₃ Boc	Pd(PPh ₃) ₄ (2%), C ₆ H ₆ , aq. Na ₂ CO ₃ , reflux, 2 d	$ \begin{array}{c} N \\ N \\ N \\ Boc $	659
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			() () ()	

TABLE VI. DIRECT CROSS-COUPLING OF PYRROLE AND INDOLE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄	Bu ₃ Sn NH ₂	Pd(PPh ₃) ₄ (2%), PhMe, 110°, 24 h	NH ₂ (70)	462
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, DMF, 80°, 2.5 h	OEt (68)	272. 273
	Me ₃ Sn $\overset{N}{\smile}$	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h	S (70)	550
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux, 10 h	$\bigvee_{S}^{N} \bigvee_{N}^{SMe} (71)$	651
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux		437
	Me ₃ Sn S	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 3 h	S (62)	536
	TMS Bu ₃ Sn N TMS	1. Pd(PPh ₃) ₄ (2%) PhMe, reflux, 48 h 2. HCl (1 N)	NH ₂ (82)	461, 540
	Bu ₃ Sn-N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°	(88)	289
	H ₂ N Bu ₃ Sn N SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 4 h	H_2N N SEM (89)	74
	MeO Bu ₃ Sn S SnBu ₃	$Pd(PPh_3)_2Cl_2$ (10%), THF, reflux, 20 h	S S (6)	667
() I	Bu ₃ SnC≡CH	Pd(PPh ₃) ₄ (10%), DMF, 25°	(84)	47
	$H C = C = CH_2$ Bu ₃ Sn	Pd ₂ (dba) ₃ (3%) PPh ₃ (24%), DMF, rt, 20 h	$ \begin{array}{c} $	275
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), CH ₃ CN, rt, 2 h	(52)	267
	Bu ₃ SnCΞCOEt	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, rt, 5 h	(47)	302
	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, reflux	(58) S	261
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 60°, 16 h	S (80)	103
	Bu ₃ SnPh	PhPd(PPh ₃) ₂ I (2%), HMPA, 70°, 30 min	I (94)	463
	Bu ₃ SnPh	Pd/C (0.5%), CuI (10%), AsPh ₃ (20%). NMP, 80°, 16 h	I (77)	461

TABLE VII. DIRECT CROSS-COUPLING OF THIOPHENE AND BENZOTHIOPHENE ELECTROPHILES

-	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Me ₃ Sn N	Pd(PPh ₃) ₄ (5%). PhMe, reflux	$(24) \qquad \qquad$	437
		Bu ₃ Sn i-PrO O	BnPd(PPh ₃) ₂ Cl (5%), Cul, DMF. rt	S (75)	12
30		Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (5%), CuI, DMF, т	S 0 (67)	12
N		Bu ₃ Sn CO ₂ Et	Pd2(dba)3 (5%), P(2-furyl)3 (40%), THF, 65°	$CO_2Et = I (30) + O_2Et = I (23)$	375
		Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	₩_Ś NHAc II (74)	375
		Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), CuI, AsPh ₃ , DMF, 60°	(61) O	554
		Bu ₃ Sn Ph CO ₂ Et	Pd(OAc) ₂ , CuI, PPh ₃ , DMF, rt, 23 h	$rac{Ph}{CO_2Et}$ (79)	435
		Bu ₃ Sn O OBn Bu- <i>n</i>	Pd ₂ (dba) ₃ (2%), DMF, rt	S O OBn (79) Bu-n	439
		Bu ₃ Sn SnBu ₃	Pd(OAc) ₂ , P(2-furyl) ₃ , DME, reflux, 5 h	S ()	668
		Me ₃ SnSnMe ₃	Pd(CH ₃ CN) ₂ Cl ₂ (1%), HMPA, rt, 80 min	$\sqrt{\frac{95}{SnMe_3}}$	313
303	S Br	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), DMF, 100°, 24 h	(74)	96, 669
		Me ₃ Sn V	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h		550, 551
		Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux, 24 h	$\bigvee_{S}^{N} \bigvee_{N}^{SMe} (90)$	651
	∠_s ↓ I	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), CuO, DMF, 100°, 1.5 h	(63)	96, 669

TABLE VII. DIRECT CROSS-COUPLING OF THIOPHENE AND BENZOTHIOPHENE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (2.5%) AsPh ₃ (10%). CuI (10%), DMF, 60°, 4 h	(73)	291
Br S Br	Bu ₃ Sn S	$Pd(PPh_3)_2Cl_2 (10\%),$ THF, reflux, 20 h	$ \begin{array}{c} S \\ N \\ N \end{array} $ $ \begin{array}{c} S \\ N \end{array} $ $ \begin{array}{c} S \\ S \\ N \end{array} $ $ \begin{array}{c} (52) \\ (52) \end{array} $	667
	Me ₃ Sn N	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h	(64)	560, 561
	Me ₃ Sn N	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h		560
	Me ₃ Sn	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h	N (55)	560
	Me ₃ Sn S	Pd(PPh ₃) ₄ (20%), PhMe, reflux, 3 h	$\begin{bmatrix} s \\ s \end{bmatrix} \xrightarrow{s} \begin{bmatrix} s \\ s \end{bmatrix} \xrightarrow{s} \begin{bmatrix} s \\ s \end{bmatrix} \xrightarrow{s} \begin{bmatrix} s \\ s \end{bmatrix}$	536
	Me ₃ Sn	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h		560
I S I	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 60°, 16 h	(61)	103
	<i>P</i> -TolCO ₂ <i>P</i> -TolCO ₂	1. Pd(PPh ₃) ₄ (20%) PhMe, reflux, 12 h 2. NaOMe, MeOH	$HO \qquad NH \\ HO \qquad N O \qquad (47) \\ HO \qquad O \qquad HO \qquad (47)$	670
Br Br	Me ₃ Sn	Pd(PPh3)4, PhMc, reflux	Br (>36)	584
S NO ₂	Bu ₃ Sn S	Pd(PPh ₃) ₄ , Ag ₂ O, DMF, 100°	(29)	669
	Bu ₃ Sn N	$Pd(PPh_3)_4$, Ag_2O , DMF, 100°	N (51)	669
Br S Br	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ , THF	S S S S $(-)$	671
	Bu ₃ Sn S C ₁₆ H ₃₃ -n	Pd(PPh3)2Cl2, THF	$n - C_{16}H_{33}$ S $C_{16}H_{33}$ $C_{16}H_{33}$	671 - <i>n</i>

TABLE VII. DIRECT CROSS-COUPLING OF THIOPHENE AND BENZOTHIOPHENE ELECTROPHILES (Continued)

Substr	ate Stannane	Conditions	Product(s) and Yield(s) (%)	Refs
s s	Bu ₃ Sn SnBu ₃	Pd(OAc) ₂ , P(2-furyl) ₃ , DME, reflux, 5 h	(46)	668
OHC S Br	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%). DMF, 80°, 4.5 h	OHC S N (87)	651
	Bu ₃ Sn	Pd2(dba)3 (1%) P(2-furyl)3 (4%). dioxane	OHC S ()	672
OHC s	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 60°, 16 h	OHC S (71)	103
но	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 60°, 16 h	но (79)	103
OHC S ^{Br}	Bu ₃ Sn N N Me'	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux	OHC S Me ⁽⁸⁹⁾	425
OMe I S I	Me ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (3%). THF, reflux, 24 h	S S (9)	104
⁶ s	Me ₃ Sn S	Pd(PPh ₃) ₄ , Ag ₂ O, DMF, 100°	$S \xrightarrow{N} S (25)$	669
O Br	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%) P(2-furyl) ₃ (4%), dioxane		672
Br	Br Me ₃ Sn	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 5 h		560
$\mathbf{Br} \qquad \mathbf{Br} \qquad \mathbf{Fr} \qquad Fr$	Me ₃ Sn SnMe ₃	Pd(PPh ₃) ₄ (31%), PhMe, 70°, 2 d	$\begin{pmatrix} S \\ S $	673
MeC = C S	I Me_3Sn R R	$Pd(PPh_3)_2Cl_2$ (5%), THF, reflux, 4 h	$MeC \equiv C \qquad S \qquad R \qquad (64)$	105
Aco	$R = SiMe_2Ph$ $Bu_3Sn \qquad S$	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 60°, 16 h	AcO S S (63)	103
	Me ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 7 h	Aco (47) +	104
8)
Bu-n	Bu ₃ Sn SnBu ₃	$Pd(OAc)_2$, $P(2$ -furyl) ₃ , DME, reflux, 5 h	S (56)	668

TABLE VII. DIRECT CROSS-COUPLING OF THIOPHENE AND BENZOTHIOPHENE ELECTROPHILES (Continued)

 TABLE VII. DIRECT CROSS-COUPLING OF THIOPHENE AND BENZOTHIOPHENE ELECTROPHILES (Continued)

TABLE VIII. DIRECT CROSS-COUPLING OF PYRAN AND BENZOPYRAN ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ (10%), DMF, 60°, 2 h	(93)	291
Br		Pd(OAc) ₂ , PP h ₃ (8%), NEt ₃ , 100°, 24 h	R	327
0	Bu₃Sn Bu₃SnPh Bu₃SnC≡CPh		$\frac{R}{CH=CH_2}$ $\frac{R}{Ph}$ $\frac{R}{(64)}$ $\frac{R}{(71)}$ $\frac{R}{(61)}$ $\frac{R}{(61)}$	
TFO	Me ₃ SnPh	Pd(PPh ₃) ₄ (2%), LiCl, dioxane, reflux, 18 h	Ph (87)	680
¹⁰ OMe Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°	OMe N SEM (96)	289
	Bu ₃ Sn N	Pd₂(dba)₃•CHCl₃, PPh₃, LiCl, THF	O_2N G F F (83)	681
² Bn O OTf	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (2.7%), LiCl, THF, reflux, 14 h	$\bigcup_{O}^{Bn} SnMe_3 $ (36)	678
NC OTF		Pd ₂ (dba) ₃ •CHCl ₃ (5-10%), P(2-furyl) ₃ (10-20%), LiCl, THF, reflux, 10 h		
	Bu ₃ Sn-pyridyl-2 Bu ₃ Sn-pyridyl-3 Me ₃ Sn-pyridyl-4		R 2-pyridyl (80) 3-pyridyl (72) 4-pyridyl (75)	683, 68 683 683
NC OTF	Bu ₃ Sn N	Pd2(dba)3•CHCl3 (5-10%), P(2-furyl)3 (10-20%), LiCl, THF, reflux, 10 h		681
OTT	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (2.7%), LiCl, THF, reflux, 14 h	SnMe ₃	678
K R PhS PhSe			N (71) (82)	

TABLE VIII. DIRECT CROSS-COUPLING OF PYRAN AND BENZOPYRAN ELECTROPHILES (Continued)

 TABLE VIII. DIRECT CROSS-COUPLING OF PYRAN AND BENZOPYRAN ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C5	N Br	Bu ₃ Sn O ^N	Pd(PPh ₃) ₂ Cl ₂ (3%), dioxane, reflux, 6 h	(64) 0-N	292, 530
		Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, DMF, 80°, 3.5 h	OEt (62)	272, 273
		Me ₃ Sn N	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	N (77)	93
		Me ₃ Sn	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	(59) N (59)	93
		Me ₃ Sn $\overset{N}{\swarrow}_{O}$	Pd(PPh ₃) ₄ (5%) C ₆ H ₆ , 80°, 24 h		550, 551
		OHC Bu ₃ Sn S	Pd(PPh ₃) ₄ (3%), Ag ₂ O, DMF, 100°, 5 min	СНО К (60)	32
		Bu ₃ Sn N SMe	$Pd(PPh_{3})_{2}Cl_{2}$ (3%), DMF, 80°, 24 h	$ \sum_{N}^{N} \sum_{N}^{N} SMe (72) $	651
		Me ₃ Sn S	Pd(PPh ₃) ₄ (10%), PhMe, reflux, 4 h		536

TABLE IX. DIRECT CROSS-COUPLING OF PYRIDINE ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OEt	Pd(PPh_3)_4 (2%), $C_6 H_6, 80^\circ, 20 \ h$	OEt (88)	539
	Me ₃ Sn	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	(79)	93
	Me ₃ Sn	Pd(PPh ₃) ₄ (3%), Ag ₂ O, DMF, 100°, 0.5 h	(58)	32
	Bu ₃ Sn OTBDMS	Pd(PPh ₃) ₄ (10%), PhMe, 110°, 18 h	OTBDMS (0)	371
	Bu ₃ Sn- N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°	$\bigvee_{N} \bigvee_{j \in M} (80)$	289
	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ , (10%), CuI (10%), DMF, 60°, 6 h	OMe N N Ts	291
	H ₂ N Bu ₃ Sn , SEM	Pd(PPh ₃) ₄ (10%), DMF, 90°, 8 h	$ \begin{array}{c} H_2N \\ N \\ SEM \end{array} $ (78)	74
	Bu ₃ SnSPh	Pd(PPh ₃₎₄ (5%), PhMe, 100°, 24 h	(85) N SPh	319
	Me ₃ Sn S	Pd(CH ₃ CN) ₂ Cl ₂ , HMPA, 70°		692
	$Bu_3SnC \equiv CCO_2Et$	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, Et ₄ NCl, 50°, 2 h	$\bigwedge_{N} -C \equiv CCO_2 Et (19)$	552
	Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), CuI, DMF, 60°	(76) 0 0	554
(N) OTf	Me ₃ Sn N	Pd(PPh ₃) ₄ (3%), LiCl, dioxane, reflux, 72 h	(67)	693
Br N	Mc ₃ Sn 0	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h		550
	Bu ₃ Sn ON	Pd(PPh ₃) ₂ Cl ₂ (3%), dioxane, reflux, 4 h	0 ^N (60)	292, 530
	Bu ₃ Sn OEt	P d(PPh ₃) ₂ Cl ₂ (3%), DMF, Et ₄ NCl, 80°, 5 h	OEt (72)	272, 273
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
-----------	---	--	--	----------
	Me ₃ Sn N	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	I (63)	93
	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), DMF, 100°, 24 h	IN I (99)	96
	Me ₃ Sn N	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	(68)	93
	Me ₃ Sn	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	(70)	93
	Me ₃ Sn \swarrow_{O}	Pd(PPh_3) ₄ (5%), C_6H_6 , 80°, 24 h		550, 551
	Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux, 24 h	$\bigvee_{N=1}^{N} \bigvee_{N=1}^{N} SMe (65)$	651
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), PhMe, reflux	(63)	437
	Bu ₃ Sn OBu-t	BnPd(PPh ₃) ₂ Cl (1.7%), DMF, 70°, 16 h	OBu-r (91)	296
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux, 2 h	$N = N = N = M $ $Me^{(70)}$	425
	Bu ₃ Sn M TMS	Pd(PPh ₃) ₄ (2%), PhMe, reflux, 72 h	NH ₂ (64)	464
	Bu ₃ Sn N N Boc	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux	$\bigvee_{N=1}^{N} \bigvee_{\substack{N \\ Boc}}^{N} (66)$	425
	SnMe ₃	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h		93
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (5%), PhMe, 100°, 24 h	SPh (87)	319
I I	$Bu_3SnC \equiv COEt$	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, DMF, rt, 2 h		302
	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), CuO, DMF, 100°, 3 h	$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	96
	Bu ₃ SnC≡CCO ₂ Et	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, THF, 50°, 3 h	\sim C=CCO ₂ Et (29)	552
	Bu ₃ Sn OEt	Pd(PPh ₃) ₄ (2%), C_6H_6 , 80°, 20 h	OEt (65)	539
Br N	Me ₃ Sn N	Pd(PPh ₃) ₄ , Ag ₂ O, DMF, 100°, 70-80 min	N N (70)	669

TABLE IX. DIRECT CROSS-COUPLING OF PYRIDINE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn N	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	I (65)	93
	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), CuO, DMF, 100°, 80 min	I (75)	96
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), xylene, reflux, 12 h	(72)	93
	Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), DMF, 80°, 10 h	$N \longrightarrow N$ SMe (67)	651
	Cl ₃ SnPh	$\begin{array}{l} PPh(\textit{m-C}_{6}H_{4}SO_{3}Na)_{2},\\ PdCl_{2}, KOH, 90^{\circ} \end{array}$	N (81)	281
	Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), CuO, DMF, 100°, 4 h	N (44)	96
N V	Me ₃ Sn	PdCl ₂ , HMPA, 70°	(96)	692
Br	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (10%), THF, reflux, 20 h	S (52)	667
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°	(92) N N (92) SEM SEM	289
	Bu ₃ Sn BocHN N	Pd(PPh ₃) ₄ . CuI, dioxane, reflux	CI N CI NHBoc (81)	582
OTf NO2	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, CH ₃ CN, reflux, 1 h	$EtO \qquad OEt \qquad OEt \qquad (14)$	95
NO2 N Br	Bu ₃ Sn S	Pd(PPh ₃) ₄ (5%), CuO, DMF, 100°, 40 min	CHO S	694
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, CH ₃ CN, reflux, 1.5 h	(96) NO2 OEt	95
NO ₂	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, CH ₃ CN, reflux, 1.5 h	$(36) + (47)$ $N = NO_2$ NO_2	95
NO ₂ Br	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, CH ₃ CN, reflux, 3 h	$NO_2 OEt OEt (16)$	95
O ₂ N N Br	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, THF, 70°, 10 min	(89)	695
NO2	Me ₃ Sn N	$Pd(PPh_3)_2Cl_2$ (5%), THF, reflux, 28 h	NO ₂ N (58)	696

TABLE IX DIRECT	CROSS-COUPLING OF PYRIDINE FLECTROPHILES (Continued)	
TIDEE IN. DIRECT	eross coorento or r rribitte erectrior mees (comment)	

TABLE IX. DIRECT CROSS-COUPLING OF PYRIDINE ELECTROPHILES (Continued)

TABLE IX. DIRECT CROSS-COUPLING OF PYRIDINE ELECTROPHILES (Continued)

TABLE IX. DIRECT CROSS-COUPLING OF PYRIDINE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (5%), PhMe, 100°, 24 h	(95)	319
N OTF	Bu ₃ Sn	Pd(PPh3)4 (3%), LiCl, dioxane, 80°	(68) N (68)	196
	Bu ₃ Sn Ph	Pd(PPh3)4 (3%), LiCl, dioxane, 80°	N (57)	196
	Bu ₃ Sn S	Pd(PPh ₃) ₄ (3%), LiCl, dioxane, 80°	$ \begin{array}{c} $	196
			OTMS	
N Br	OTMS Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), PhMe, 100°, 24 h	N (67)	457
	Bu ₃ SnSPh	Pd(PPh ₃) ₄ (5%), PhMe, 100°, 24 h	N SPh (94)	319
N	Bu ₃ Sn O	Pd ₂ (dba) ₃ (2.5%), CuI, DMF, 60°		554
	Bu ₃ Sn Bu ₂ n	Pd ₂ (dba) ₃ (2.5%), Cul, DMF, 60°	N = 0 $Bu-n$ (69)	554

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES

Substrate	Stannane	Conditions	Product(c) and Viold(c) (7)	
	0	Pd2(dba)3 (2.5%).		Refs.
N Br	Bu ₃ Sn O TMS	CuI, DMF, 60°		554
CI-N-	Bu₃Sn ∽	$Pd(PPh_3)_2Cl_2,$ $Cl(CH_2)_2Cl, 80^\circ, 6 h$	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	137
		Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 80°, 60 h	$\begin{array}{c} & & (73) \\ & & & \\ & & $	141
CI	Bu ₃ Sn	DMF, 80°, 6 h	CI N (73)	141
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 70°, 7 h	N (77) CI N (77)	141
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 80°, 10 h	N = N (60) Ph	141
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), Cl(CH ₂) ₂ Cl, 70°, 24 h	N (94)	137
	Bu ₃ Sn	Pd(0), Cl(CH ₂) ₂ Cl, 70°, 24 h	N (83) CI N (83)	137
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 7 h	$Ph \xrightarrow{N} Cl (70)$	141
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF. 70°, 6 h	$C_{1} \xrightarrow{N} P_{h} (73)$	141
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 70°, 3 h	(69)	141
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 80°, 10 h	(71)	141
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 10 h	Ph N (63)	141
~	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 15 h	Ph (68)	141
	Bu ₃ Sn	Pd(PPh ₃) ₄ , Cl(CH ₂) ₂ Cl, 70°, 48 h	MeS N (92)	137
	Bu ₃ Sn OMe	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 90°, 24 h	$Mes \longrightarrow N \longrightarrow OMe^{(56)}$	140
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 8 h	$MeS \xrightarrow{N} Ph $ (60)	141
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 1.3 h	Mes N Ph (85)	141

TABLE X. DIRECT	ROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (C
	Entro of a righter LEECIROPHILES (Lontinue)

· ··				-
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			N	
	Bu ₃ sn OR	$Pd(PPh_3)_2Cl_2(2\%),$		140
	<u>R</u>	DMF, 90°, 24 h	Mes N	
	TBDMS		(53)	
	SiMe ₂ Thex		(32)	
	TBDPS		(64)	
Br			Br	
N	Pur Su Ph	$Pd(PPh_3)_2Cl_2(2\%),$	$ \begin{pmatrix} \mathbf{N} \\ \mathbf{N} \end{pmatrix} = \begin{pmatrix} \mathbf{N} \\ \mathbf{N} \end{pmatrix} $ (66)	141
	Bu ³ Su	DMF, 50°, 27 h	MeS	
A CI				
N = Y er	Bu ₃ SnPh	$Pd(PPh_3)_2Cl_2(2\%),$	N (66)	141
	-	DMF, 100°, 5 h	Mas	
	∽ Ph	Pd(PPha)aCla (2%)	$N \longrightarrow CI$ (66)	141
	Bu ₃ Sn	DMF, 100°, 3.5 h		141
		,,	Mes N % Ph	
	\sim		N	
N]	N N	Pd(PPh ₃) ₄ (0.7%),	M = S $N = SMe$ (38)	140
N ^N I	Me ₃ Sn N SMe	PhMe, reflux, 20 h		
			N N	
	D. CoCoD		N	
	K35115f1K3	$Pu(PPR_3)_2(UAC)_2(3\%),$	$\mathbf{K} = \mathbf{Me} \ (54)$	140
_		DU4INCI, IHP, M, O h	$MeS = N = SnR_3 \qquad K = Bu (46)$	
N r Br	Bu-Sn	DdfD(OD- 31	N r Br	134
	Bu33ii 🔨	$Pu[P(OPT-1)_3]_4,$		137
N I		$C(Cn_2)_2Cl, 10^2, 24 n$	MeS N 💛	
N CI			N Cl	
	Me ₄ Sn	$Pd(PPh_3)_2Cl_2$ (2%),	$ \qquad \qquad$	135
es' n 1		DMP, 70, 48 h	MeS N	
			~ (l	
	Bu ₂ Sn	$Pd(PPh_3)_2Cl_2$ (2%),	N (71)	135
	20,011	THF, reflux, 4 h	Mes	
			A Cl	
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%),	N (69)	135
		DMF, 100°, 2 h	Mes	
		$Pd(PPh_3)_2Cl_2$ (2%),	N ↓ (90)	135
	Bu ₃ Sn	THF, reflux, 17 h	MeS	
			N CI	
	Bu ₄ Sn	$Pd(PPh_3)_2Cl_2$ (2%),	$\begin{bmatrix} \mathbf{N} \\ \mathbf{N} \end{bmatrix} \begin{bmatrix} (62) \end{bmatrix}$	135
		DMF, 120°, 14 h	MeS N Bu-n	
			N CI	
		$Pd(PPh_1,C) = (202)$		135
	BusSp	THF, reflux. 7 h	MeS N (50)	1.55
	500,000	titt, tottun, / II	`s//	
			N CI	
	Bu ₃ SnPh	$Pd(PPh_3)_2Cl_2$ (2%),	IN (62)	135
		THF, reflux, 20 h	MeS N Ph	
			N CI	
	Bu ₃ SnBn	$Pd(PPh_3)_2Cl_2$ (2%),	1 N (60)	135
		DMF, 100°, 15 h	MeS N Bn	
			N Cl	
	Pu Sp Ph	$Pd(PPh_3)_2Cl_2$ (2%),		135
	Duzoii N	THF, reflux, 6 h	MeS	
			N Cl	
		$Pd(PPh_3)_2Cl_2$ (2%),		135
	bu3ofi > OTHP	THF, reflux, 33 h	MeS	
	Cl.		N	
		$Pd(PPh_3)_4$ (0.7%).	N. SMe (56)	140
	Me ₃ Sn N SMe	PhMe, reflux, 20 h	MeS N Y Y	

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
MeS N OTF	Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), LiCl, dioxane, 80°	Mes N (60)	196
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (3%), LiCl, dioxane, 80°	Mes N Ph (68)	196
	Bu ₃ Sn S	Pd(PPh ₃) ₄ (3%), LiCl, dioxane, 80°	$ \begin{array}{c} \text{SMc} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{S} \\$	196
MeO ₂ S N Br	Bu ₃ Sn	Pd(PPh ₃) ₄ , Cl(CH ₂) ₂ Cl, 70°, 2 h	MeO ₂ S N (90)	137
	Bu ₃ Sn	Pd(PPh ₃) ₄ , Cl(CH ₂) ₂ Cl, 70°, 24 h	McO ₂ S N (86)	137
MeO ₂ S N Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ , Cl(CH ₂) ₂ Cl, 70°, 48 h	MeO ₂ S N (49)	137
	Bu ₄ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 5.5 h	$MeO_2S \xrightarrow{N}_{N} Bu-n $ (56)	141
	Bu_3SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 2.5 h	$MeO_2S \xrightarrow{N} N \xrightarrow{(65)} Ph$	141
	Bu ₃ Sn ^{Ph}	Pd(PPh ₃) ₂ Cl ₂ (2%). DMF, 100°, 3 h	$MeO_2S \xrightarrow{N} Ph $ (65)	141
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, THF, reflux, 5 h	$Me OMe OMe NO_2 OEt + NO_2 OEt OEt OEt OEt OEt OEt OEt OEt OEt OEt$	274
	Me₃SnC≅CTMS	Pd(OAc) ₂ (10%), AsPh ₃ (20%), Et ₃ N, CH ₃ CN, rt, 4 h	N = (92)	136
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, K ₂ CO ₃ , DMF, 110°, 2 h	N (45)	138
	Bu3Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, K ₂ CO ₃ , DMF, 110°, 2 h		138
	Bu ₃ Sn <u>TMS</u>	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, K ₂ CO ₃ , DMF, 110°, 2 h	(73)	138
1	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, K ₂ CO ₃ , DMF, 110°, 3 h	N (60)	138
N I	$Bu_3SnC \equiv CCO_2Et$	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, THF 50°, 3 h	$ \begin{array}{c} \searrow = N \\ \searrow - C \equiv C C O_2 E t (21) \end{array} $	552

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
\downarrow		Pd(PPh ₃) ₂ Cl ₂ (5%),	\downarrow	
	Bu ₃ Sn	Et ₄ NCl, K ₂ CO ₃ ,	N (52)	138
N CI		DMF, 110°, 2 h	N N	
		$Pd(PPh_{3})_{2}Cl_{2}$ (5%),	N	
	BusSn	Et ₄ NCl, K ₂ CO ₃ ,	(88)	138
	Bu3511 S	DMF, 110°, 2 h		
		$Pd(PPh_3)_2Cl_2(5\%).$	1	
	Bu ₃ Sn	Et ₄ NCl, K ₂ CO ₃ ,	N (78)	138
	↔ TMS	DMF, 110°, 2 h	TMS	
		$Pd(PPh_3)_2Cl_2$ (5%),	N	
	Bu ₃ SnPh	Et ₄ NCl, K_2CO_3 , DMF 110° 3 b	(71)	138
∽ .Br		$Pd(PPh_3)_2Cl_2$ (5%).	N Ph	
	Bu ₃ SnPh	$Et_4NCl, K_2CO_3,$	N (71)	138
N A		DMF, 110°, 8 h	∧ _N ≈	
· ~ ·	Bu ₃ Sn	$Fu(FF113)_2U_2(3\%),$ Et ₄ NCl. K ₂ CO ₂ .	N (67)	138
N	v	DMF, 110°, 2 h	N N	.20
		$Pd(PPh_3)_2Cl_2$ (5%),	\square	
	Bu ₃ Sn S	Et ₄ NCl, K_2CO_3 , DMF 110° 2 h	N (95)	138
			∧ [™] N [™]	
	BusSn o	$Pd(PPh_3)_2Cl_2$ (5%), Et.NCL KaCOa	N TMS (72)	120
	TMS	DMF, 110°, 2 h		138
		$Pd(PPh_3)_2Cl_2$ (5%),	Ph	
	Bu ₃ SnPh	$Et_4NCl, K_2CO_3,$	$ \begin{array}{c} \mathbf{N} \\ \parallel \end{array} \qquad (92) $	138
		DMF, 110°, 4 h	/ N/ /	
Br		$Pd(PPh_3)_2Cl_2$ (5%),	N Ph N Ph	120
	Bu ₃ SnPh	Et ₄ NCl, K_2CO_3 , DMF 110° 4 h	(7) + (50)	138
CI	Du CaDh	$Pd(PPh_3)_2Cl_2 (5\%),$ Et NCL KaCO2	N CI (50)	138
N CI	อนุรมคน	DMF, 110°, 6 h	N Ph	
		$Pd(PPh_3)_2Cl_2(5\%),$		
· ·	Bu ₃ Sn	Et ₄ NCl, K ₂ CO ₃ ,	N (45)	138, 139
`N [®] CI		DMF, 110°, 5 h		
		Pd(PPh ₃) ₂ Cl ₂ (5%), Et.NCL K-CO-		138.130
	Bu ₃ Sn S	DMF, 110°, 4 h	N J J (00)	.50, 159
			✓ `N´ `Cl	
			N CO ₂ Et	130
	Bu ₃ Sn CO ₂ Et	ra(rrn3)2C12		1.57
		$Pd(PPh_1) = C = (5\%)$		
	Bu ₃ Sn	$Et_4NCl, K_2CO_3,$	N (69)	138, 139
	TMS	DMF, 110°, 5 h	N Cl	
		Pd(PPh ₃) ₂ Cl ₂ (5%),	N Ph N Ph	100 ::
	Bu ₃ SnPh	$Et_4NCl, K_2CO_3,$	$1 \qquad (73) + 1 \qquad (20)$	138, 139

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (Cont.	inued

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs
	Bu ₃ Sn <u>Ph</u>	$Pd(PPh_3)_2Cl_2$	N N N Cl	139
	Bu ₃ Sn	PdCl ₂ , Et ₄ NCl, DMF, 110°, 2 h	$N \rightarrow N \rightarrow$	139
	Bu ₃ Sn S	PdCl ₂ , Et ₄ NCl, DMF, 110°, 2 h	N = S (45)	139
	Bu ₃ Sn <u>TMS</u>	PdCl ₂ , Et ₄ NCl, DMF, 110°, 2 h	$N \rightarrow TMS $ (24) $N \rightarrow N_3$	139
	Bu ₃ SnPh	PdCl ₂ , Et ₄ NCl, DMF, 110°, 3 h	$ \begin{array}{c} N \\ N \\ N \\ N \\ N_3 \end{array} $ (65)	139
	Bu ₃ Sn OEt	$\begin{array}{l} Pd(PPh_{3})_{2}Cl_{2}~(4\%),\\ Et_{4}NCl,~CH_{3}CN,\\ reflux,~33~h \end{array}$	OMe NHAc NOEt (37)	274
MeO N NHAc	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), Et ₄ NCl, CH ₃ CN, reflux, 3 h	MeO N NHAc (71)	274
N^{OMe}	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, Et ₄ NCl, reflux 4 h 24 h	$OMe OMe$ NO_{2} NO_{2} NO_{2} NO_{2} OEt OEt $(50) (44)$ $(21) (73)$	274
	OEt Bu ₃ Sn	Pd(OAc) ₂ (10%), Bu ₄ NCl, NaHCO ₃ , NEt ₃ , H ₂ O/EtOH	MeO N O (83)	707
	Bu3Sn	Pd(OAc) ₂ (10%), AsPh ₃ (20%). CH ₃ CN, 40°, 8 h	MeO N O O O O O O O O O O O O O O O O O O	301
	Bu ₃ Sn OH	Pd(OAc) ₂ (10%), AsPh ₃ (20%), CH ₃ CN, 40°, 14 h	$MeO \longrightarrow OMe (54)$	301
	OBn Bu ₃ Sn OBn	Pd(OAc) ₂ (10%), AsPh ₃ (20%), CH ₃ CN, 60°, 0.5 h	MeO N OBn (88)	301
	Bu ₃ Sn OCPh ₃	Pd(OAc) ₂ (10%), AsPh ₁ (20%), CH ₃ CN, THF,	$MeO \xrightarrow{N} OMe (66) $	301

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ SnPh	1. Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 72 h 2. H ₂ O, 12 h	$ \begin{array}{c} $	129
		Bu ₃ Sn S Ph	1. Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 72 h 2. H ₂ O, 12 h	$ \begin{array}{c} H \\ NH_2 \\ NH_2 \\ SPh \\ NH_2 \\ SPh \\ SSPh \\ SSSSSSSSSS$	129
1		Bu ₃ Sn S	1. Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux 2. H ₂ O	H H H H H H H H H H	135
		Bu ₃ Sn X	1. Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux 2. H ₂ O	$ \begin{array}{c} 0 \\ HN \\ N \\ O \\ N \\ H \end{array} $ $ \begin{array}{c} X \\ X \\$	135
		Bu ₃ SnR	1. Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux 2. H ₂ O	HN = 2-pyridyl (28) $R = 3-p yridyl (42)$ $HN = H$	135
F	PhS N Br	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 8 h	PhS N (69)	141
	I N Bu₃SnC≡CCO₂Et	Pd(PPh ₃) ₂ Cl ₂ (5%), Et ₄ NCl, THF, 50°, 4 h	$ \begin{array}{c} \searrow \\ N \\ \searrow \\ \searrow \\ Ph \end{array} $ C \equiv C \equiv C \equiv C \equiv C \equiv (38)	552	
	N Br O N Br Bn	R ₃ Sn OTBDMS	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux, 1 h	N = Me (98) $R = Me (98)$ $R = Bu (72)$ Bn	708
	MeO N CI	Bu ₃ Sn S	Pd(PPh ₃) ₄ (2%), THF, reflux, 2 h	MeO (48)	709
C ₁₂		Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 130°, 15 h	Ph N Ph (54)	141
	Cl N Ph	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 80°, 50 h	$\begin{array}{c} N & \begin{array}{c} Ph \\ Cl & Ph \end{array} (70) \\ \end{array}$	141
	MeO N Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), THF, reflux, 2 h	MeO (61)	709
	r-BuO N	Bu ₃ Sn N N Me	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux	OBu-1 N N Me (39)	135
C ₁₈	N Ph	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, 100°, 15 h	$N \qquad Ph \qquad (82)$	141

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (Conta	inued

TABLE X. DIRECT CROSS-COUPLING OF PYRIMIDINE ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C9	N ^N CI	Me ₃ Sn // O	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h		550, 551
	N OTF	Bu ₃ SnR $\frac{R}{H}$ CH=CH ₂ 2-thienyl Ph C=CPh (<i>E</i>)-CH=CHPh	Pd(PPh ₃) ₂ Cl ₂ (5%), LiCl, dioxane, 90°, 24 h	(89) (74) (71) (88) (65) (69)	194
	Br	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), DMF, reflux, 16 h	(74)	699
		Me ₃ Sn <u>Ph</u>	Pd(PPh ₃) ₄ (5%), DMF, reflux, 16 h	Ph (33)	699
		Me ₃ Sn $\overset{N}{\swarrow}_{O}$	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 48 h		550, 551
		Me ₃ Sn N	Pd(PPh ₃) ₄ (1%), xylene, reflux	(79)	93

TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	Pd(PPh ₃) ₄ (15%), C_6H_6 , reflux, 2 h	(74)	284
Cl OTf	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	CI N (75)	699
F OTf	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	(92)	699
F N OTF	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	F (92)	699
F OTf	Me ₃ Sn	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h	F (86)	699
	Bu ₃ SnR	Pd(PPh ₃) ₄ (5%), LiCl, dioxane		194
TTO	$\frac{R}{CH=CH_2}$ C=CPh (E)-CH=CHPh	90°, 24 h 90°, 24 h 90°, 24 h	R (68) (43) (60)	
	Me ₃ SnPh	Pd(PPh3)4 (2%), LiCl, dioxane, 98°, 82 h	I, R = Ph, (61)	189
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (2%), LiCl, dioxane, 98°, 75 h	(67) SnMe ₃	189
N O S S	Bu ₃ Sn	Pd(OAc) ₂ (5%), LiCl, dppp (5%), DMF, 90°	(50)	202
d_2 Br	Me ₃ Sn $\overset{N}{\swarrow}_{O}$	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h		550
N N	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), PhMe, 110°	(85)	710
	Bu ₃ Sn \mathcal{U}_{O}	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 12 h		551
N	Bu ₃ SnR	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, 90°, 24 h		194
OTf	$\frac{R}{CH=CH_2}$ Ph C=CPh (E)-CH=CHPh	ZnCl ₂	к (62) (58) (70) (69)	

 TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
CI OTf	F Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , LiCl, THF, 65°, 18 h	Cl (61)	264
MeO N	OTBDMS Bu ₃ Sn	$Pd(PPh_3)_4 (15\%),$ C_6H_6 , reflux, 2 h	MeO (85)	98
MeO OTf	Me ₃ Sn	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h	MeO N (99)	699
	Me ₃ Sn	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h		699
C ₁₁ OTf	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	(86)	699
OTF N	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	(80)	699
OTF V CF ₃	Bu ₃ Sn N Ts	Pd ₂ (dba) ₃ (2.5%), AsPh ₃ (10%), DMF, 60°, 1 h	(92)	291
MeO N OTf	Me ₃ Sn	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h	MeO N (86)	69 9
MeO OTf	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	McO MeO N (82)	699
	Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), LiCl, dioxane, reflux, 16 h	MeO MeO N (68)	699
	Me ₃ Sn S Cl	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h	$MeO \qquad \qquad$	699
	Me ₃ Sn	Pd(PPh3)4 (5%), LiCl, dioxane, reflux, 16 h	McO MeO N (86)	699

TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES (Continued)

TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES (Continued)

TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES (Continued)

TABLE XI. DIRECT CROSS-COUPLING OF QUINOLINE AND ISOQUINOLINE ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	∑ ^N S ^{Br}	Me ₃ Sn S	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux, 48 h	$\left(\begin{array}{c} S \\ S \end{array} \right) \left(\begin{array}{c} S \end{array} \right) \left(\begin{array}{c} S \\ S \end{array} \right) \left(\begin{array}{c} S \end{array} \right) \left(\begin{array}{c} S \\ S \end{array} \right) \left(\begin{array}{c} S$	108
		Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 48 h	$\bigvee_{S}^{N} \bigvee_{N=J}^{N} (95)$	108
		$\frac{M\varepsilon_{3}Sn}{N}$	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 48 h	$\left\langle \begin{array}{c} S \\ S \end{array} \right\rangle \left\langle \begin{array}{c} S \\ S \end{array} \right\rangle \left\langle \begin{array}{c} S \\ N \end{array} \right\rangle \left\langle \begin{array}{c} (96) \\ S \end{array} \right\rangle$	108
		Bu ₃ Sn N	Pd(dppb)Cl ₂ (5%), CuO, DMF, 100°, 0.5h		96, 669
		Bu ₃ Sn N	Pd(PPh ₃) ₄ , Ag ₂ O, DMF, 100°, 80-100 min	$\left(\begin{array}{c} S \\ S \end{array} \right) $ (25)	669
		Me ₃ Sn \swarrow_{O}	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , 80°, 24 h		550
		Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (3%), Cl(CH ₂) ₂ Cl, reflux, 24 h	$\bigvee_{S}^{N} \bigvee_{S}^{SMe} (68)$	651
	S N Br	Me ₃ Sn N	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux, 48 h	$\langle N \rangle$ (79)	108
		Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 48 h	$\left(\begin{array}{c} S \\ N \end{array} \right) $ (72)	108

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
N S Br	Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 48 h	S (75)	108
Br S Br	Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 48 h	$N \xrightarrow{S} N \xrightarrow{S} N$ (92)	108
	Me ₃ Sn N	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 48 h	$\begin{pmatrix} N \\ S \\ S \\ N \\ S \\ S$	108
	Me ₃ Sn-	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 48 h		108
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10%), THF, reflux, 20 h	S = S = S (52)	667
	Bu ₃ Sn Se	Pd(PPh ₃) ₂ Cl ₂ (10%), THF, reflux, 20 h	Se Se Se (25)	667
	Me ₃ Sn N TMS	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux	$Br \sim S^{N} \sim TMS^{(76)}$	108
	Me ₃ Sn N TMS	Pd(PPh ₃)₄ (5%), C ₆ H ₆ , reflux, 48 h	$SMT \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{(45)}_{S}$	108
C_4 O HN Br O N H	Bu ₃ Sn S	Pd(PPh ₃) ₄ , Ag ₂ O, DMF, 100°, 20 h	HN O N H	669
	Bu ₃ Sn	Pd ₂ (dba) ₃ , AsPh ₃ , NMP, 40°		11
	Bu ₃ Sn	Pd(PPh ₃) ₄ , DMF, 100°, 2 h	$ \begin{array}{c} $	264
	Bu ₃ Sn	1. Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, rt, 16 h 2. 50°, 5 h	$ \begin{array}{c} 0 \\ HN \\ 0 \\ N \\ H \end{array} $ (70)	128
	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, reflux	HN S (37)	135, 669
	Bu ₃ Sn Se	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF, reflux	HN O N H	135
	Bu ₃ Sn N	Pd(PPh ₃) ₂ Cl ₂ , Ag ₂ O, DMF, 100°	HN N N (68)	669, 135
	Bu ₃ SnR	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP	$\begin{array}{c} O \\ HN \\ HN \\ O \\ N \\ H \\ N \\ H \end{array} \begin{array}{c} P5^{\circ}, 16 \text{ h}, \text{R} = p\text{-MeOC}_{6}\text{H}_{4}. (3) \\ \text{rt}, 24 \text{ h}, \text{R} = \text{C} \equiv \text{CPh}. (61) \\ \text{rt}, 16 \text{ h}, \text{R} = (E)\text{-CH} = \text{CHPh}. (5) \\ \text{c} \text{CH} = \text{C} = \text{C} + \text$	8) 128 92)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃₎₂ Cl ₂ (2%), THF, reflux, 20 h	$O = \begin{pmatrix} H & O \\ N & V \\ N & N \end{pmatrix} \begin{pmatrix} O \\ V \\ N & N \end{pmatrix} \begin{pmatrix} O \\ V \\ N \end{pmatrix} \begin{pmatrix} O \\ V \end{pmatrix} \begin{pmatrix} O \\ V \\ N \end{pmatrix} \begin{pmatrix} O \\ V \end{pmatrix} \begin{pmatrix} O $	425
	Bu ₃ Sn S Ph	Pd ₂ (dba) ₃ , P(2-furyl) ₃ , NMP, rt, 16 h	$ \begin{array}{c} $	715
	Bu ₃ Sn C ₈ H ₁₇ -n	Pd ₂ (dba) ₃ , P(2-furyl) ₃ , NMP, 40°, 2 d	$ \begin{array}{c} $	447
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2$ (2%), THF, reflux	$O = \bigvee_{\substack{N \\ H}}^{H} \bigvee_{\substack{SEM}}^{O} (60)$	425
	OEt Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), DMF, 80°, 20 h	N = N $N = N $ $N = N $ $H $ (58)	133
	Bu ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ (3%), DMF, 90°, 20 h	N = N = N = N = N = N = N = N = N = N =	133
CI	Bu ₃ SnR <u>R</u> Ph Bn (<i>E</i>)-CH=CHPh	Pd(PPh ₃) ₂ Cl ₂ (3%), DMF, 20 h 100° 130° 80°	$ \begin{array}{c} R \\ N \\ N \\ N \\ N \\ N \\ H \\ (81) \\ (36) \\ (84) \\ R \end{array} $	133
H_2N N H H	Bu ₃ SnR <u>R</u> 2-thienyl Ph (<i>E</i>)-CH=CHPh	Pd(PPh ₃) ₂ Cl ₂ (3%), DMF, 45 h 90° 100° 80°	$H_{2}N \xrightarrow{N} N \xrightarrow{N} H_{H} (76) (73) (75)$	133
	Bu ₃ Sn X	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, 90°, 18 h	X = 0 (85) X = S (84)	114
	Bu_3SnR R 3-Me-5-thienyl Ph m-MeOC_6H_4	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, 90°, 18 h	(84) (58) (61)	14
	Bu3Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), PhMe, 90°, 18 հ		114
	Et₄Sn	Pd(PPh ₃) ₄ (0.1%), PhMe, reflux, 8 d	(80)	716

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
N.N. MOM		Bu ₃ Sn	Pd ₂ (dba) ₃ (2.5%), Cul, DMF, 60°	O = O (48) $N $ MOM	554
Br P B	r	Me ₃ Sn S	Pd(dba) ₂ , PPh ₃ , PhMe, reflux, 5 h	Br S P S S S S S S S S S S S S S S S S S	116
		Bu ₃ Sn-V N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°	Me N = N $N = N $ $N = N$	289
		TsHN Bu ₃ Sn N SEM	Pd(PPh ₃) ₄ (10%), DMF, 110°, 2 h	$Me_{H_2N} \longrightarrow N$ $O = \bigvee_{N=V}^{N} \bigvee_{N=V} (68)$ $Me_{O} SEM$	74
Br Br	r	Bu ₃ SnH	Pd(PPh ₃) ₄ (2.5%), PhMe, 110°, 1 h	Br (70) Br P	116
		Me ₃ Sn O	Pd(dba) ₂ (5%), P(2-furyl) ₃ (10%), THF, 70°, 4 h	Br Oppool	116
		Me ₃ Sn X	Pd(dba) ₂ (5%), P(2-furyl) ₃ (10%), THF, 80°, 8 h	$\begin{array}{c} Br \\ X \\ P \\ Br \end{array}$ $\begin{array}{c} X \\ X $	116
C-		Me ₃ Sn N	Pd(dba) ₂ , PPh ₃ , PhMe, reflux, 10 h	Br P N (40)	116
	CI	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	$\bigvee_{S}^{N} Ph \qquad (86)$	531
		Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (1%), xylene, 120°, 20 h	N (88)	531
Br	ŀr	Me ₃ SnC≡CPh	Pd(dba) ₂ (5%), PPh ₃ (10%), THF, 85°, 3 h	PhC ⁵ C P C C C C P (40)	116
	Et Sl	Bu ₄ Sn	Pd(PPh ₃) ₄ (5%), K ₂ CO ₃ , DMF, reflux, 5 h	$Et \qquad N \qquad Et \qquad (73)$	142
r-BuHN	N Br	Me ₃ Sn	$Pd(PPh_3)_2Cl_2(5\%)$	$h - Bu HN - \begin{pmatrix} 0 \\ N \\ S \end{pmatrix} - \begin{pmatrix} N \\ S \end{pmatrix} - TMS (65)$	107
		Me ₃ Sn BocHN N OEt	Pd(PPh ₃) ₂ Cl ₂ (5%)	r-BuHN S BocHN N OEt (55)	107

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Ret
0			0	
		Pd(PDb) Cl	HN $X = O(x)$	717
0 N	Bu ₃ Sn x	Pd(PPn3)2C12	O = N + O = O = O	/1/
		OF COL	X = S()	
0		$Pd(PPh_3)_4$	0	
\rightarrow			\rightarrow	
но Он			но ОН	
0	SnBu ₃		0~~	
Br	, ·			
HN			O BO	
HO ON	\sim	Bd(BDb) (2001)		127
	B.	PhMe reflux 24 h		127
507	0,-,0	r nivie, retiux, 24 n	HO_ O N	
			$\sum_{i=1}^{n}$	
но он			\searrow	
0				
()-otf	Bu ₃ SnR	Pd(PPh ₃) ₄ , LiCl,	R = H (66)	719
>		THF, 65°	$ \qquad \qquad$	
TMS			TMS	
Pr-1	Du SpD	Pd(PPh) (5%) K-CO.	N Pr-1	142
	Bujjik	DME roflux 5 h		142
i-Pr N Cl	<u>R</u>	DMP, Tenax, 5 fr	i-Pr N R	
	Bu		(42)	
	$[C_5H_{11}-n]$		(40)	
	$[C_6H_4Cl-p]$		(67)	
	$[C_6H_4Me-o]$		(10)	
	$[C_6H_4Me-m]$		(59)	
	$[C_6H_4Me-p]$		(80)	
	$[C_6H_4OMe-p]$		(65)	
	$[C_8H_{17}-n]$		(66)	
0			0-	
N Pr-1	[BusSpC-Hard]	$Pd(OA_c)_{a}(5\%) K_{a}CO_{a}$	(37)	142
人人	(bu30ile311][4]	DME reflux 18 b		
<i>i</i> -Pr N Cl		Dim, renax, ron	i-Pr' N C ₅ H ₁₁ -n	
			0-	
			N ⁺ Pr-i	1.40
	[Bu ₃ SnR]	$Pd(PPh_3)_4$ (5%), K_2CO_3 ,		142
	R	DMF, reflux	i-Pr N R	
	C ₆ H ₄ Cl-p	5 h	(55)	
	C ₆ H ₄ Me-p	5 h	(81)	
	C ₆ H ₄ OMe-p	2 h	(66)	
			0-	
			$\vec{\mathbf{N}}$ + $\mathbf{D}_{\mathbf{r}}$	
	[BusSnCaHur-n]	Pd(OAc) ₂ (5%), K ₂ CO ₂	(43)	142
		$DMF_reflux, 18 h$		
			1-PT IN C8H17-R	
N Pr-i			N Pr-i	
	[Bu ₃ SnR]	$Pd(PPh_3)_4$ (5%), K_2CO_3 ,		142
i-Pr N+Cl		DMF, reflux	$i-Pr$ N_{+} R	
0-	R		0-	
v	C _k H ₄ Cl-n	7 h	(29)	
	C.H.Me-n	5 h	(50)	
	C ₄ H ₄ OMe- <i>n</i>	2 h	(52)	
Bn o X	P		Bn A R	
N N	BusSnR	Pd(PPhalaCh (5%)	N	720
o=s	Dujonik	CI(CH-)-CI 50° 20 h	O=S N	
и N О		Ci(City)/Ci, 50, 20 ii	Ö	
<u>X</u>	K CH CH		(55)	
Br D-	CH=CH ₂		(55)	
BL D-	∠-unenyi Ph		(45)	
H+			(7-2)	
Br Br	C=CPh		(30)	
Br Br Br	C=CPh (E)-CH=CHPh		(30) (80)	

TABLE XII. DIRECT CROSS-COUPLING OF MISCEL	LANEOUS HETEROCYCLIC ELECTROPHILES (Continued
--	---

-	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
_		Et₄Sn	Pd(PPh ₃) ₄ , DMF, reflux, 5 h		721
		Et ₄ Sn	Pd(PPh ₃)4, DMF, reflux, 5 h	N Et (45)	721
		Bu ₃ Sn OH TBDMSO	Pd(OAc) ₂ (10%), AsPh ₃ (20%), CH ₃ CN, THF, 40°, 16 h	OTHP N N-N N OF OH OTRDMS	301
		Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), P(<i>o</i> -Tol) ₃ , DMF, 100°, 18 h		120
	$HO - OI $ NH_2 $N - NH_2$ $N - NH_2$ $HO - NH_2$	R₄Sn <u>R</u>	Pd(PPh ₃) ₄ (10%), NMP, 110°		130, 722
		Me CH=CH ₂	2 h 14 h	(72) (65)	
	$HO \xrightarrow{VH_2} Br$	R ₄ Sn	Pd(PPh ₃) ₄ (10%), NMP, 110°	$HO \longrightarrow O \longrightarrow R$	130, 722
	OH NH2	R Me CH=CH ₂ Et	2 h 14 h 14 h	OH (92) (75) (87) NH ₂	
		Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, 90°		723
	HO NH2	Bu ₃ Sn	Pd(PPh ₃) ₄ (8%), DMF, 95°, 30 h	HO HO HO HO HO NH_2 NH_2 (82)	723
		R ₄ Sn	Pd(PPh ₃) ₄ (10%), NMP, 110°		130, 722
	но он	R Me CH=CH ₂ Et	14 h 14 h 15 h	HO OH (74) (70) (80)	

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnR	Pd(CH ₃ CN) ₂ Cl ₂ .	HO NH_2 N $R = CN (86)$	119
HO OH $HO OH$ $HO OH$ $HO OH$ $HO OH$ $HO OH$	Bu_3SnR $\frac{R}{CH=CH_2}$ $C(OEt)=CH_2$	DMF Pd(PPh ₃) ₄ (5%), PhMe, 110°, 4 h	$Ph \xrightarrow{O}_{S} R I$ (80) (69) $R = CH = CH_2 (84)$	724
	2-pyridyl C=CPh Me ₃ SnPh	Pd(PPh ₃) ₄ (5%), PhMe, 110°, 4 h	(69) (75) I, R = Ph, (63)	724
Br N Br Bn	Me ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ (10%), PhMe, reflux	$ \begin{array}{c} Br \\ N \\ N \\ N \\ Ph \\ Bn \end{array} $ (58)	111
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), BHT, PhMe, reflux, 1.5 h	N (39)	72
014	OEt Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, reflux, 17 h 2. HCl, π, 2 h	$ \begin{array}{c} $	726
	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (10%), PhMe, reflux	HO HO HO HO HO HO HO HO HO HO HO HO HO H	118, 120
	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%). DMF, 90°, 6 h	HO OH HO OH HO OH	120
7	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, 105°, 24 h		120
$ \begin{array}{c} H \\ $	Bu ₃ SnR R CH=CH ₂ 2-furyl Ph CH=CH ₂ 2-furyl	Pd(OAc) ₂ (5%), PPh ₃ (10%), CuI (10%), NMP, 100°, 30 min	$ \begin{array}{c} H \\ O \\ N \\ Ph \\ O \\ (63) \\ (42) \\ (57) \\ (55) \\ (54) \end{array} $	727

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continu-
--

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	$ \begin{array}{c} $	Bu ₃ SnC≡CTMS	Pd(PPh ₃) ₄ (5%). PhMe, 80°, 4 h	$Br \xrightarrow{N} N = C_{V} (40)$	728
		Bu₃SnC≡C−C≡CTMS	Pd(PPh ₃) ₄ (3%), PhMe, 50°, 18 h	(10)	728
	HO ₂ C	Bu ₃ Sn	l. Pd(PPh ₃) ₂ Cl ₂ (4%), BHT, DMF, 50°, 5.5 h 2. rt, 64 h	$HO_2C \xrightarrow{V_0}_{N} F $ (30)	729
		Bu ₃ SnR R Bu- <i>n</i> 2-thienyl Ph Bn	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF reflux, 3 h 100°, 16 h 110°, 4 h reflux, 4 h	$ \begin{array}{c} Bn \\ N \\ N$	134
	CI N N N Bn	Bu ₃ SnR R CH=CH ₂ Bu-n C(OEt)=CH ₂ 2-thienyl Ph Bn (E)=CH=CHPh	Pd(PPh ₃) ₂ Cl ₂ (5%), DMF reflux, 3.5 h reflux, 21 h 100°, 4.5 h 100°, 16 h 110°, 7 h reflux, 18 h 100°, 24 h	$ \begin{array}{c} $	134
C ₁₃		Bu ₃ SnSnBu ₃	PhPd(PPh ₃) ₂ I (1%), Bu ₄ NBr, HMPA, 120°, 19 h	$ \begin{array}{c} O \\ N \\ H \end{array} $ $ \begin{array}{c} SnBu_{3} \\ X = Br (56) \\ X = I (30) \end{array} $	613
	Br Br O H	Bu ₃ SnSnBu ₃	PhPd(PPh ₃) ₂ I (1%), Bu ₄ NBr, HMPA, 110°, 10 h	$\bigvee_{O}^{N} \overset{SnBu_3}{\underset{H}{\overset{(10)}{}}}$	613
	$ \begin{array}{c} $	Bu ₃ SnR R CH=CH ₂ 2-furyl Ph CH=CH ₂ 2-furyl Ph	Pd(OAc) ₂ (5%), PPh ₃ (10%), CuI (10%), NMP, 100°, 30 min	$ \begin{array}{c} & O \\ & & & \\ & & & \\ & & Ph & O \\ & & & O \\ & & & (100) \\ & & & (70) \\ & & & (75) \\ & & & (95) \\ & & (55) \\ & & (55) \\ & & (72) \\ \end{array} $	727

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%). BHT, THF, 65°, 28 h	EtO_2C	729
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (9%), BHT, dioxane, reflux, 3 h	$EtO_2C \xrightarrow{O} F (54)$	729
	Bu ₃ Sn NHBoc	Pd(PPh ₃) ₄ (2%), BHT, dioxane, reflux, 40 h	$EtO_2C \xrightarrow{O} F (48)$	729
	Bu ₃ Sn NHBoc	Pd(PPh ₃) ₂ Cl ₂ (2%), DMF, reflux, 24 h	$EtO_2C \xrightarrow{O} F (76)$	258, 729
	Bu ₃ Sn OTBDMS	Pd(PPh ₃) ₂ Cl ₂ (2.2%), BHT, THF, 65°, 26 h	EtO ₂ C	729
MOM O N N O O OTf	Bu ₃ Sn CONH ₂	Pd(PPh ₃) ₄ (4%), THF, reflux	(22)	200
MOMO O N N N N N N N N N N N N N	O _B O SnBu ₃	Pd(PPh ₃₎₄ (20%), PhMe, reflux, 24 h	MOMO = O = O = O = O = O = O = O = O = O	127
	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), DMF, 110°	MOMO O N SEM (96) O O O O O O O O O O O O O	289
$\begin{array}{c} Me_2N \\ SEM-N \\ Cl \\ N \\ \end{array} \\ Cl \\ N \\ Cl \\ Cl \\ \end{array} \\ Br \\ Cl \\ Cl \\ \end{array}$	Bu ₃ Sn BocHN N	Pd(PPh ₃) ₄ , Ag ₂ O, dioxane, reflux, 4 h	$Me_{2}N$ $SEM-N$ CI N N $MBoc$ (31)	582

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅	OEt OEt				
	O OTF	Bu ₃ Sn CO ₂ Me	Pd(PPh ₃) ₄ (4%), THF, reflux	(70)	200
		Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, rt, 72 h	TBDMSO O N (91)	128
	AcO O AcO OAc $CONH_2$	Bu ₃ Sn OH	Pd(CH ₃ CN) ₂ Cl ₂ , CH ₃ CN, 100°	$AcO \qquad O \qquad (68)$	112
		Bu₃SnC≡CTMS	Pd(PhCN)2Cl2	$AcO \qquad N \qquad C \equiv CTMS \qquad (77)$	113
HI O AcO AcO	AcO - OAc OAc OAc OAc	Bu ₃ Sn S	Pd(PPh ₃) ₄ (4%), PhMe, reflux, 22 h	$ \begin{array}{c} $	717
	HN OTF	Bu ₃ SnR	Pd(PPh ₃) ₄ (5%), LiCl, BHT, dioxane, 100°		199, 374
	AcO OAc	$\frac{R}{CH=CH_2}$ $C(Me)=CH_2$ $(E)-CH=CHCO_2Et$ $C(CO_2Et)=CH_2$ $(E)-CH=CHTMS$ $(E)-CH=CHPh$ $(E)-CH=CHCH_2OSIMe_2T$	4 h 5 h 1 h 15 h 4 h 8 h 7 hex 5 h	AcO OAc (87) (86) (92) (46) (73) (75) (92)	
		Me ₃ SnR R Ph	20 h	(64)	
		C ₆ H ₄ F-4	8 h	(89)	
		$C_6H_3F_2-3,5$	5 h	(81)	
		C₄H₄CF3-4 C₄H₄OMe-4	3 h 28 h	(91)	
		C ₆ H ₃ (CF ₃) ₂ -3.5	4 h	(85)	

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
OTHP THP			OTHP THP	
	Bu ₃ Sn O	Pd(OAc) ₂ (10%), AsPh ₃ (20%), CH ₃ CN, 25°, 8 h		301
	Bu ₃ Sn OCPh ₃	Pd(OAc) ₂ (10%), AsPh ₃ (20%), THF, CH ₃ CN, 25°, 12 h	$ \begin{array}{c} $	301
C ₁₆ Ph N Ph N Cl	Bu₄Sn	Pd(PPh3)4 (5%), K2CO3, DMF, reflux, 5 h	$\begin{array}{c} & \\ & \\ & \\ Ph \\ & \\ Ph \\ & \\ Ph \\ & \\ N \\ & \\ & \\ Bu-n \end{array} $ (82)	142
	[Bu ₃ SnR]	$Pd(PPh_3)_4$ (5%), K_2CO_3 ,	Ph N	142
	R	DMF, reflux	Ph N R	
	C_5H_{11} -n C_6H_4Cl -n	5 h 2 h	(80)	
	C ₆ H ₄ Me- <i>o</i>	5 h	(53)	
	C ₆ H ₄ Me-m	2 h	(87)	
	C ₆ H ₄ Me-p C ₄ H ₄ OMe-p	2 h 2 h	(88)	
	C ₈ H ₁₇ -n	2 h	(83)	
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), DMF, 95°, 45 min		131
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 145°, 45 min		131
		 Pd(OAc)₂, AsPh₃, NEt₃, NMP, 80°, 12 h NH₄OH, CH₃OH, dioxane 	$HO \longrightarrow HO OH$	732
	Bu ₃ Sn-thienyl-2 Ph ₄ Sn		R = 2 -thienyl (49) $R = Ph (33)$	
	R₄Sn	Pd(PPh ₃) ₄ (10%), NMP		722
AcO OAc	R Me CH2=CH	85°, 20 h 80°, 1 h	 AcO OAc (53) (88)	

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	$(CH_2=CH)_4Sn$	Pd(PPh ₃) ₄ , HMPA, 60°, 16 h		125
	Bu ₃ Sn	Pd2(dba)3 (1%), P(2-furyl)3 (8%), NMP, гт, 72 h	I (76)	128
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (10%), CH ₃ CN, 20°, 6 h	I (86)	121
	Bu ₃ Sn S	 Pd(PPh₃)₂Cl₂ (10%), dioxane, 90°, 20 h K₂CO₃, CH₃OH 		718
	Me ₃ Sn O	Pd(PPh3)4, PhMe, reflux, 7 h	HO p-TolCO ₂ O N (95) T I I I I I I I I I I I I I I I I I I I	717
	Me ₃ Sn S	Pd(PPh ₃) ₂ Cl ₂ , THF, reflux	$ \begin{array}{c} $	717
	Bu ₃ Sn CO ₂ Et	Pd(PPh ₃) ₂ Cl ₂ (10%), CH ₃ CN, 50°, 20 h	(57)	121
	Bu ₃ Sn TMS	Pd(PPh ₃) ₂ Cl ₂ (10%), CH ₃ CN, 60°, 16 h	HN O N (82)	121
	Ph ₄ Sn	Pd(PPh ₃) ₄ , HMPA, 60°, 3 d	(35)	125
	Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (10%), CH ₃ CN, 50°, 16 h	$ \begin{array}{c} O \\ HN \\ O \\ N \\ I \end{array} $ (81)	121
	Bu ₃ Sn OTHP	Pd(PPh ₃) ₂ Cl ₂ (10%), CH ₃ CN, 60°, 16 h	O HN O N (82)	121
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (10%), EtOAc, reflux, 24 h	$ \begin{array}{c} O \\ HN \\ O \\ N \end{array} $ $ \begin{array}{c} O \\ N \end{array} $ $ \begin{array}{c} SnMe_3 \\ (72) \end{array} $	670

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%) Refs.
	Bu ₃ Sn X	Pd(PPh3)2Cl2, THF	H_{N} H_{N} $X = 0 () 717$ $X = S ()$
BocHN N CO ₂ CHPh ₂ BocHN	Me₄Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, 25°, 16 h	$\begin{array}{c} p-\text{folCO}_2 \\ \hline \\ BocHN \\ \hline \\ O \\ \hline \\ O \\ CO_2 CHPh_2 \end{array} $ $\begin{array}{c} \text{BocHN} \\ (85) \\ 40 \\ \hline \\ CO_2 CHPh_2 \\ \end{array}$
	Bu ₃ Sn 98.5% Z	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, ZnCl ₂ , 25°, 16 h	BocHN S (90) 98% Z 40 O O O O O O O O O O
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, 50°, 40 h	BocHN (48) + 40 CO_2CHPh_2
			(16) + (16) + (12)
	Bu ₄ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), NMP, 50°, 7 d	$\begin{array}{c} \text{BocHN} \\ \text{O} $
	Bu ₃ Sn N Me	Pd2(dba)3 (1%), P(2-fury1)3 (4%), NMP, 25°, 1 h	BocHN O O O O CHPh ₂ (89) 40
	Me ₃ Sn Bu-t	Pd2(dba)3 (1%), P(2-furyl)3 (4%), NMP, 25°, 16 h	BocHN S O O O O O O O $Bu-t$ $(17) + 40$
			$\begin{array}{c} \text{BocHN} \\ \text{O} \\ \text{O} \\ \text{CO}_2 \\ \text{CHPh}_2 \end{array} $ (74)
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), ZnCl ₂ , NMP, 25°, 20 h	BocHN S O (73) 40 O CO ₂ CHPh ₂ O (73) 40
C_{26}	Bu ₃ Sn _{CO2} Me	Pd(0), CuI, DMF	CO ₂ Me (80) 738
i-PrCOHN i-PrCO2 i-PrCO2 i-PrCO2 i-PrCO2 i-PrCO2 i-PrCO2	Bu ₃ Sn CHO	Pd(PPh ₃) ₄	$H = O$ $i - PrCOHN - N$ $i - PrCO_2 O_2 CPr - i$ $(67) = 739$ $(67) = 739$

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

CO₂CHPh₂

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

398

TABL	E XII. DIRECT CROSS-COUPL	NG OF MISCELL	ANEOUS I	HETEROCY	CLIC ELECT	rophiles	(Continued)

TABLE XI	I. DIRECT CROSS-	COUPLING OF N	MISCELLANEOUS I	HETEROCYCLIC	ELECTROPHILES	(Continuea
----------	------------------	---------------	-----------------	--------------	---------------	------------

TABLE XII. DIRECT CROSS-COUPLING OF MISCELLANEOUS HETEROCYCLIC ELECTROPHILES (Continued)

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (1%), CO (15 psi), C ₆ H ₆ , 80°		268
	Me ₃ Sn Fe(CO) ₃	BnPd(PPh ₃) ₂ Cl (2.6%), Cl(CH ₂) ₂ Cl, HMPA, 50°, 24 h	(66)	754
	Bu₃SnC≡CPh	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	$\overset{O}{\searrow} C \equiv CPh \qquad (55)$	149
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl (2%), CH ₂ Cl ₂ , 60°, 10 h	Ac0 (30)	755
	Me ₃ Sn	$Pd(PPh_3)_2Cl_2 (5\%), C_6H_6, reflux, 8 h$	(70)	285
	Me ₃ Sn	$PdCl_2$ (5%), C_6H_6 , reflux, 4 d	0 N (24)	284
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	Ph (47)	148, 753
	Bu ₃ Sn O	Pd(PPh ₃) ₄ (5%), dioxane, 60°, 3 h	Ph (86)	148
	Bu ₃ SnC≡C− OTBDMS	$Pd(PPh_3)_2Cl_2 (1.8\%),$ $Cl(CH_2)_2Cl, 84^\circ, 2 h$	$\overset{O}{\searrow} C \equiv C - \underbrace{(48)}_{OTBDMS}$	149
	Bu ₃ Sn CO ₂ Me TMSO CF ₃	Pd(PPh ₃) ₄ (0.05%), THF, reflux, 8 h	$CO_2Me \qquad (68)$ TMSO CF ₃	756
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 48 h	O Pr- <i>i</i> (72)	150, 30
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 48 h	0 (74)	150, 30
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 16 h	(62)	150, 30
	$Bu_3Sn \rightarrow 0 + 0$ H CO_2Bu-t	BnPd(PPh ₃) ₂ Cl, C_6H_6 , rt, 4 h	$\overset{O}{} \overset{H}{} \overset{O}{} \overset{H}{} \overset{O}{} \overset{(79)}{} (79$	543
	TMS Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), 80°, 300 h	O TMS (62) Ph	256
	$Bu_3Sn \bigvee_{C_7H_{15}-n} C_{7H_{15}-n}$	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 16h	$\bigcup_{\substack{0 \\ OBz}} C_7 H_{15} \cdot n (<5)$	243
	Bu ₃ Sn N Ph	BnPd(PPh ₃) ₂ Cl (4%), CO (30 psi), C_6H_6 , 90°, 9h	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ Ph \end{array} $ (52)	757

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn N CO ₂ Ph	Pd(PPh ₃) ₂ Cl ₂	$ \begin{array}{c} O \\ H \\ \hline N \\ CO_2Ph \end{array} $ (45)	758
	MeO SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	MeO (60)	513
	o SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	0 0 1 (40)	513
	EIO	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	I (10)	513
	Aco	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	(30)	513
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 80°, 24 h	$\bigcup_{O}^{O} SnBu_3 $ (59)	287, 546
	Me ₃ SnSnMe ₃	BnPd(PPh ₃) ₂ Cl or Pd(PPh ₃) ₄ (5%), THF, reflux, dark, 12 h	$SnMe_3$ (70)	309, 759
	BuյSnH	Pd(PPh ₃) ₄ (1%), PhMe, -70°	0 (82) H ₃ ¹³ C H	760
CI CI	MeO SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	CI 0 (60)	513
	Me₄Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°		147
	Bu ₃ Sn	Rh(PPh ₃) ₃ Cl (2%), CH ₂ Cl ₂ , 40°, 5 h	0 (70)	2
	Bu ₃ Sn	Rh(PPh ₃) ₃ Cl (2%), C ₆ H ₆ , 80°, 12 h	0 (64)	2
		BnPd(PPh ₃) ₂ Cl (0.4%), Cl(CH ₂) ₂ Cl, 60°, 16 h	MeO (49)	761, 762
	Bu ₃ Sn	Pd(Ph-BIAN) (dimethyl fumarate) (1%), DMF, 50°, 17 h	(85)	415
	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	O OEt (89)	763
	Me ₃ Sn Fe(CO) ₃	BnPd(PPh ₃) ₂ Cl (2.6%), Cl(CH ₂) ₂ Cl, HMPA, 80°, 2 h	0 (70) Fe(CO) ₃	754

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	$Pd(PPh_{3})_{2}Cl_{2}$ (5%), $C_{6}H_{6}$, reflux, 8 h	0 (76)	284
	Me ₃ Sn	$PdCl_2$ (5%), C_6H_6 , reflux, 4 d	0 (55)	284
	Bu ₃ Sn OTBDMS	BnPd(PPh ₃) ₂ Cl, THF, reflux, 9 h	OTBDMS (81)	764
	Bu ₃ Sn OTBDMS	Pd(PPh ₃) ₂ Cl ₂ (6.5%), THF, 70°, 20 h	O O O O (70)	287
	$Bu_3Sn \xrightarrow{Ph}_{CO_2Bu-r}$	Pd ₂ (dba) ₃ (0.05%), HMPA, 100°, 2.4 h	$\begin{array}{c} O & Ph \\ & & \\ & $	247
	$Bu_{3}Sn \bigvee_{Ph}^{O} V \xrightarrow{O} Ph$	BnPd(PPh ₃) ₂ Cl (3.7%), CO (30 psi), C ₆ H ₆ , 90°, 21 h	$ \begin{array}{c} $	757
	Me ₃ SnSnMe ₃	BnPd(PPh ₃) ₂ Cl (5%), THF, reflux, 18 h	0 (70) SnMe ₃	309, 759
	$ \begin{array}{c} & Ph \\ Bu_3Sn & \swarrow \\ & & \\ $	Pd ₂ (dba) ₃ (0.05%), CHCl ₃ , 100°, 16 h	$ \begin{array}{c} O \\ Ph \\ Cl \\ CO_2Bu-t \end{array} $ (22)	247
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, C ₆ H ₂ Me ₄ -1,2,3,4, 100°, 1	0 1.5h (73)	250
	Bu ₃ Sn CO ₂ Me TMSO CF ₃	Pd(PPh ₃) ₄ (0.05%), THF, reflux, 8 h	$\nabla CO_2Me (76)$ ∇CF_3	756
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, 100°, 16 h	$\bigvee^{O} SnMe_3 $ (43)	759
CI	Bu ₃ SnH	BnPd(PPh ₃) ₂ Cl (1%), Et ₂ O, rt	(95)	156
	Bu ₃ Sn	$Rh(PPh_3)_3Cl (2\%),$ $C_6H_6, 80^\circ, 12 h$	0 (37)	2
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), CH ₃ CN, п, 1 h	(55) O	267
	$Bu_3SnC \equiv CR$ $\frac{R}{CO_2Me}$ TMS $CH(OEt)_2$	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	$C \equiv CR$ (67) (71) (70)	149
	Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (1%), CO (15 psi), C ₆ H ₆ , 80°		268

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ₃ Sn Fe(CO) ₃	BnPd(PPh ₃) ₂ Cl (2.6%) Cl(CH ₂) ₂ Cl, HMPA, 80°, 2	R = Me. (58) $R = Bu, (48)$	754
	Bu ₃ Sn <u>OEt</u> OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	$\bigvee_{\substack{i \in V \\ OEt}}^{O} OEt $ (83)	763
	$Bu_3SnC\equiv CPh$	$Pd(PPh_3)_2Cl_2 (1.8\%),$ $Cl(CH_2)_2Cl, 84^\circ, 2 h$	$- C \equiv CPh \qquad (77)$	149
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C_6H_6 , reflux, 8 h		284
	Me ₃ Sn	PdCl ₂ (5%), C ₆ H ₆ , reflux, 4 d	0 (28)	284
	Bu₃SnC≡C−_ OTBDMS	$Pd(PPh_3)_2Cl_2 (1.8\%),$ $Cl(CH_2)_2Cl, 84^\circ, 2 h$	$- C \equiv C - (60)$	149
	Me Si O Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , THF, reflux, 12 h	$ \begin{array}{c} $	765
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.01%), BHT, THF, 10° to п, 4 h	$EtO \longrightarrow OR \qquad R = Me (90)$ $R = Bn (70)$	766
MeO CI	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	MeO TMS (38)	537
	Bu ₃ Sn N O	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, THF, 50°, 30 min	MeO ₂ C N O O (41)	268
	Me ₃ Sn SnMe ₃	BnPd(PPh ₃) ₂ Cl (10%), THF, rt, 2 h	0=(65)	152
Ac0	MeO SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°	AcO (35) MeO	513
o CI	Bu ₃ SnH	$Pd(PPh_{3})_{4}(1\%),$	о Н (71)	156
n-Bu Cl	OAc Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 32 h	$n-Bu \xrightarrow{O} Ph \qquad (68) \\OAc$	243
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 80°, 24 h	$n-Bu \xrightarrow{O} SnBu_3 (57)$	287, 546
O CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, C ₆ H ₂ Me ₄ -1,2,3,4, 100°, 1.5	5h (44)	250

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn N H O	Pd(PPh ₃) ₄		244
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (0.08%), C ₆ H ₆ , reflux, 3 h		271
t-Bu Cl	Bu ₃ SnH	PhCOPd(PPh ₃) ₂ Cl (1%), THF, rt	O <i>r</i> -Bu H (89)	156
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	0 (82) t-Bu (82)	4
	Bu ₃ Sn	Rh(PPh ₃) ₃ Cl (2%), C ₆ H ₆ , 80°, 10 h	<i>t</i> -Bu (72)	2
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, C ₆ H ₂ Me ₄ -1,2,3,4, 100°, 1.5h	r-Bu (30)	250
	Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 4 h	<i>t</i> -Bu OMe (79)	749
	Sn CECPh Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 80°, 24 h	r-Bu C ^S CPh (75)	376
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C ₆ H ₆ , reflux, 8 h	0 <i>t-Bu</i> (73)	284
	Bu ₃ Sn	PdCl ₂ (5%), C ₆ H ₆ , reflux, 4 d	<i>t</i> -Bu (7)	284
	Bu ₃ Sn Ph O	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	<i>r</i> -Bu Ph (87)	148, 753
	Bu ₃ Sn \bigvee Ph	BnPd(PPh ₃) ₂ Cl (5%), CO (30 psi), C ₆ H ₆ , 90°, 5.5 h	$ \begin{array}{c} $	757
	Bu ₃ Sn C ₈ H ₁₇ -n OTBDMS	Pd ₂ (dba) ₃ (2.5%) P(2-furyl) ₃ (10%), THF, rt, 6 h	$C_{8}H_{17}-n \qquad (96)$	447
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, 100°, 16 h	<i>t</i> -Bu SnMe ₃ (80)	759
CI CI	OMe Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 1 h	CI OMe (79)	749
MeO ₂ C	Bu ₃ Sn MeO O	BnPd(PPh ₃) ₂ Cl (0.4%), Cl(CH ₂) ₂ Cl, 60°, 16 h	$MeO_2C \longrightarrow O (47)$ $MeO O O (47)$ $MeO O O (47)$	761
	Bu ₃ Sn MeO	BnPd(PPh ₃) ₂ Cl, CO, CHCl ₃ , 65°, 16 h	MeO_2C (56) MeO	761, 762
	Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 48 h	MeO_2C TMS (60)	537

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OBz Bu ₃ Sn C ₇ H ₁₅ -n	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 64 h	$MeO_2C \xrightarrow{O} C_7H_{15} \cdot n \qquad (40)$ OBz	243
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, rt, 12 h	(74) (74)	288
Br	Me ₃ SnR	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°	Br $R = Me, 24 h, (45)$ R = Ph, 2 h, (98)	146
	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), THF, rt		146
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	O (90)	147
r-BuO O	Bu ₃ Sn OR	BnPd(PPh ₃) ₂ Cl (0.01%), BHT, THF, 10° to rt, 4 h	$r-BuO \longrightarrow OR \qquad R = Me (40)$ $R = Bn (50)$	766
MeO ₂ C	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	MeO ₂ C (92)	147
EtO ₂ C Cl	Me ₃ Sn Fe(CO) ₃	BnPd(PPh ₃) ₂ Cl (2.6%), Cl(CH ₂) ₂ Cl, HMPA, 80°, 2 h	EtO_2C $Fe(CO)_3$ (60)	754
CI	Bu ₃ SnH	$Pd(PPh_{3})_{4} (1\%),$ $C_{6}H_{6}, rt$	H (92)	156
CI	Bu₃SnC≡CTMS	$Pd(PPh_{3})_{2}Cl_{2} (1.7\%),$ $Cl(CH_{2})_{2}Cl, reflux, 0.5 h$	O C S CTMS (44)	767
СІ	Bu ₃ SnH	PdCl ₂ (1%), PPh ₃ , C ₆ H ₆ , rt	H (98)	156
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, PhMe, 100°, 2.5 h	(58)	250
	OMe Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 1 h	(86) OMe	749
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C_6H_6 , reflu x, 8 h	(68)	284
	Me ₃ Sn	$\begin{array}{l} Pd(PPh_{3})_{2}Cl_{2}\ (5\%),\\ C_{6}H_{6},\ reflux,\ 8\ h \end{array}$	(67)	284
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C ₆ H ₆ , reflux. 8 h		284
	Me ₃ Sn	$Pd(PPh_3)_2Cl_2 (5\%),$ C_6H_6 , reflux, 8 h		284

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	$PdCl_2$ (5%), C_6H_6 , reflux, 4 d		284
	Me ₃ Sn	$\begin{array}{l} \mbox{Pd}(\mbox{PPh}_3)_2\mbox{Cl}_2\ (5\%),\\ \mbox{C}_6\mbox{H}_6.\ \mbox{reflux},\ 10\ \mbox{h} \end{array}$		284
	Me ₃ Sn	$PdCl_2$ (5%), C_6H_6 , reflux, 5 d		284
	$\operatorname{Bu}_3\operatorname{Sn}$	Pd ₂ (dba) ₃ (2.5%), P(2-furyl) ₃ (10%), THF, 25°, 16 h	$\bigcup_{i=1}^{O} C_{5}H_{11}-n (83) E:Z=9:1$	447, 768
	Bu ₃ Sn VPh	BnPd(PPh ₃) ₂ Cl (2%), CO (30 psi), C ₆ H ₆ , 100°, 3.5 h	O = O = O = O = O = O = O = O = O = O =	757
	Bu ₃ Sn C ₈ H ₁₇ -n OTBDMS	Pd ₂ (dba) ₃ (2.5%), P(2-furyl) ₃ (10%), THF, rt, 6 h	$C_8H_{17}-n \qquad (77)$	447
n-C ₆ H ₁₃ Cl	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , π	$ \begin{array}{c} \mathbf{O} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{H} \end{array} $ (77)	156
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1.4%), PhMc, 110°, 24 h	$n-C_6H_{13}$ (41)	307
	Bu ₃ SnOMe	BnPd(PPh ₃) ₂ Cl, C ₆ H ₆ , 100°, 24 h	$n - C_0 H_{13}$ OMc (82)	305
	Bu ₃ Sn	Pd(PPh ₃) ₄ , PhMe, reflux	<i>n</i> -C ₆ H ₁₃ (76)	277
	Bu ₃ SnC≡CTMS	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, reflux, 15 min	$n-C_6H_{13}$ $C_{\gtrsim CTMS}$ (58)	767
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 100°, 16 h	$n - C_6 H_{13}$ (51)	305
	Bu ₃ Sn OMe TMS	l. Pd(PPh ₃) ₂ Cl ₂ , THF, 65° 2. Bu ₄ NF, THF	$n-C_6H_{13}$ (≥ 51)	532
$F_{3}C \xrightarrow{O}_{H} O O O O O O O O O O O O O O O O O O O$	Bu ₃ Sn CO ₂ Me TMSO CF ₃	Pd(PPh ₃)₄ (0.05%), THF, reflux, 8 h	$F_{3}C \xrightarrow{O}_{H} O \xrightarrow{O}_{TMSO} CO_{2}Me \xrightarrow{(45)}$	756
	Bu ₃ Sn X	Pd(PPh ₃) ₂ Cl ₂ (1%), C_6H_6 , 70°	$ \begin{array}{c} 0 \\ X \\ X = 0 (80) \\ X = S (75) \\ X = NMe (72) \end{array} $	574
Cl	Bu ₃ Sn $E:Z = 1:7$	BnPd(PPh ₃) ₂ Cl (1%), CHCl ₃ , reflux, 24 h	$CO_{3}Et \qquad (25) E:Z = 1:2$	427

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
CI	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.63%), HMPA, 65°, 22 h	(95)	772
	Cl Bu ₃ SnH	Pd(PPh ₃) ₄ (1%). С ₆ H ₆ , п	O H (88) O	156
Br	^{°CI} Me ₃ SnPh	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 5 h	Br Ph (87)	146
MeO ₂ C	Bu ₃ Sn MeO	BnPd(PPh ₃) ₂ Cl (0.4%), Cl(CH ₂) ₂ Cl, 60°, 16 h	MeO ₂ C MeO (49)	761, 762
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl, CO (15 psi), HMPA, rt, 4 h	OBoc (87)	773
O N Cbz	Bu ₃ Sn O	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	$ \begin{array}{c} $	148
	Bu ₃ Sn	$Pd(PPh_{3})_{2}Cl_{2} (0.7\%),$ $C_{6}H_{6}$, reflux, 12 h	O N Cbz N (48)	774
	Me ₃ Sn	Pd ₂ (dba) ₃ (0.5%), PhMe, 70°, 4 h	O O NHBoc N Cb z (79)	775
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , PhMe, reflux	Chz Cl (62)	775
0	NHBoc Me ₃ Sn Cl	Pd(CH ₃ CN) ₂ Cl ₂ , PhMe, reflux	O O O NHBoc (53) Cbz Cl Cl	775
MeO ₂ C ⁻ NHCO ₂ Bn	Bu ₃ SnH	Pd(PPh ₃) ₄ (7%), ТНF, п	MeO ₂ C ⁻ NHCO ₂ Bn (>77)	776
NHBz O Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	NHBz O (37)	148
	Bu ₃ Sn Bu-n	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	NHBz O Bu-n (38)	148
	Bu ₃ Sn Bu-n	$Pd(PPh_3)_4$ (5%), dioxane, 60°, 3 h	MHBz O Bu-n (50)	148
	O II	$Pd(PPh_{3})_{4}(5\%),$	$ \begin{array}{cccc} \text{NHBz} & \text{O} \\ \downarrow & \downarrow & \downarrow & \text{Ph} \end{array} $ (38)	148

TABLE XIII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKYL SYSTEMS (Contin	ued
--	-----

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl, HMPA, 65°, 3 d		777
Me_{4}	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl, C ₆ H ₆ , reflux, 3.5 h	$Me \underbrace{\downarrow}_{5} \underbrace{\downarrow}_{5} \underbrace{\downarrow}_{5} (\geq 54)$	778
O O N CO ₂ Bn	Me₄Sn	BnPd(PPh ₃) ₂ Cl (0.5%), HMPA, 65°, 4 h	$O \qquad O \qquad O \qquad O \qquad (58)$ $O \qquad O \qquad O \qquad (58)$	779
O O O N CO ₂ Bn	R₄Sn <u>R</u> Me	BnPd(PPh ₃) ₂ Cl (0.5%), HMPA, 65°, 4 h	O O O O R $O O R$ $O O O R$ $O O O R$ $O O O O R$ $O O O O R$ $O O O O O O O R$ $O O O O O O O O R$ $O O O O O O O O O O O O O O O O O O O$	779
	Bu Bn		(72) (66) (33)	
H H CI	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 2.5 h	(≥ 49)	780
r-BuO ₂ C Cl	Bu ₃ Sn C ^S CTMS	BnPd(PPh ₃) ₂ Cl (5%), THF, 50°	r-BuO ₂ C C C C C C C C C C C C C C C C C C C	781
n-C ₁₅ H ₃₁ Cl	Bu ₃ SnH	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , rt, 2 h	$n-C_{15}H_{31} \xrightarrow{O} H $ (75)	156, 769
C ₁₇₋₂₁ R HN FMOC	Bu ₃ SnH	Pd(PPh3)4, THF, rt		782
H i-Pr s-Bu			(74) (20) (25)	
O OTBDPS	Bu ₃ Sn OBn	BnPd(PPh ₃) ₂ Cl (2.4%), CO (15 psi), CHCl ₃ , 65°, 30 h	O OTBDPS O OTBDPS O OTBDPS O	146, 783
C ₂₅ CO ₂ Me	$Me_3SnC \equiv CC_8H_{17}-n$	Pd(PPh ₃) ₂ Cl ₂ (2%), Cl(CH ₂) ₂ Cl, reflux, 30 min	CO_2Me O CO_2Me O $C_{CC}(82)$ O $OTBDPS$	784
C ₂₉	Ci		CF3	
Ac0	CF ₃ Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 65°, 24 h	AcO	262

TABLE XIII. DIRECT	CROSS-COUPLING	OF ACYL CHLORIDES	ALKYL SYSTEMS	Continued
--------------------	----------------	-------------------	---------------	-----------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Ph Cl	Bu_3SnH	$Pd(PPh_3)_2Cl_2 (1\%),$ PPh_3, C_6H_6, rt	0 (95) Ph H	156, 769
	Me ₄ Sn	Pd(Ph-BIAN) (dimethyl fumarate) (1%), DMF, 50°, 16 h	0 (98) Ph (98)	415, 147, 4, 750, 1
	Et ₃ SnMe	BnPd(PPh ₃) ₂ Cl (0.45%), HMPA, 65°	Ph Ph Ph Ph $(-)$ 83:17	27
	Bu ₃ SnMe	BnPd(PPh ₃) ₂ Cl (0.45%), HMPA, 65°	Ph + O (-) 57:43	27
	Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 18 h	O I (88) Ph	146, 750
	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 40°, 5 h	I (87)	1, 785, 146
	Sn-CH=CH ₂ Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 40°, 47 h	I (95)	376
	Me ₃ Sn OMe	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 18 h	$\frac{O}{Ph} OMe \frac{(48) + O}{Ph} (16)$	146
	Bu ₃ Sn OMe	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 18 h	$\begin{array}{c} O \\ Ph \end{array} \xrightarrow{O} OMe \begin{array}{c} (36) + O \\ Ph \end{array} \xrightarrow{O} Bu-n \end{array} (14)$	146
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.45%), CHCl ₃ , 65°	Ph I + Ph II () 50:50	27
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), L (8%), THF, 24°		11
		$L = PPh_3$ $L = AsPh_3$ $L = P(2-furyl)_3$	I + II (>90), I:II = 70:30 I + II (97), I:II = 70:30 I + II (>90), I:II = 95:5	
	Bu ₃ Sn	$\begin{array}{l} Rh(PPh_{3})_{3}Cl~(2\%),\\ C_{6}H_{6},80^{\circ},5~h \end{array}$	0 Ph (86)	2
	Sn Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 90°, 65 h	$Ph \xrightarrow{O} (53) + Ph \xrightarrow{O} (7) + O (7) + O (5)$	376
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, PhMe, 100°, 3 h	Ph (75)	250
	CF3 Bu3Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 65°, 3 h	$Ph \qquad (90)$	262
	Bu ₃ Sn H	Pd(PPh ₃) ₄ (5%), dioxane, 60°, 3 h	Ph H (60)	148
	OMe Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 1 h	Ph (73)	749

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS

429

.

 Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (1%), 100°, 20 h	$Ph \longrightarrow O$ (43)	529
	Sn OH Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 40°, 48 h	Ph (74) $E:Z = 69:31$	376
	Bu ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	O Ph Bu-n (91)	4, 146, 1, 27
	Bu ₃ Sn $E:Z = 25:75$	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 4.5 h	Ph (63) $E:Z = 30:70$	146, 783
	Bu ₃ Sn H ₂ N O	BnPd(PPh ₃₎₂ Cl (2.5%), CuI, THF, 50°, 20 min	Ph O $(84)H_2N O (84)$	268
	Bu ₃ Sn O ^N	Pd(PPh ₃) ₂ Cl ₂ , dioxane, reflux, 3 h	Ph (80)	292, 530
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), CH ₃ CN, rt, 2 h	Ph (81)	267
	OEt Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), C ₆ H ₆ , 100°	Ph OEt (75)	269
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	Ph (70)	148, 753
	Bu ₃ SnOMe	BnPd(PPh ₃) ₂ Cl, CH ₂ Cl ₂ , 65°, 4 h	Ph OMe (71)	305, 532
	Bu ₃ SnOMe	BnPd(PPh ₃) ₂ Cl, C ₆ H ₆ , 100°, 48 h	Ph (85)	305
	Me ₃ Sn O	Pd2(dba)3 (1%). p-Tol-BIAN, THF. 65°, 3 h	Ph (53)	415
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, rt, 12 h	Ph (91)	288, 287
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1.4%). PhMe, 110°, 24 h	Ph (59)	307
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (0.08%), C_6H_6 , reflux, 3 h	Ph (93)	271
	Me ₃ Sn S	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 5 min	Ph (87)	750
	Bu ₃ SnC≡CPr- <i>n</i>	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 23 h	$ \begin{array}{c} O \\ Ph \\ \end{array} C \equiv C Pr - n (70) $	146
	Bu ₃ Sn	Pd(PPh ₃) ₄ , PhMe, reflux	Ph (82)	277

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C ₆ H ₆ , reflux, 8 h	Ph (67)	284
	Me ₃ Sn N SMe	$Pd(PPh_3)_2Cl_2 (7\%),$ Cl(CH_2)_2Cl, reflux	Ph N (97)	459
	R ₃ Sn N N SO ₂ Me	Pd(PPh ₃) ₂ Cl ₂ (14%), THF, reflux	Ph $R = Me, (71)$ N SO ₂ Me $R = Bu, (61)$	459
	Sn CO ₂ Me Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 40°, 44 h	Ph CO ₂ Me (64)	376
	Bu ₃ Sn MeO	BnPd(PPh ₃) ₂ Cl, CO, CHCl ₃ , 65°, 16 h	Ph O O (47) MeO	762, 761
	Bu ₃ SnC≡CTMS	$Pd(PPh_3)_2Cl_2 (1.8\%),$ $Cl(CH_2)_2Cl, 84^\circ, 2 h$	$C \equiv CTMS$ (64)	149
	Bu ₃ Sn TMS	$\begin{array}{l} Pd(PPh_3)_2Cl_2,\\ CH_2Cl_2, 82^\circ\end{array}$	Ph + F (65) TMS	263
	Me ₃ SnPh	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), Cl(CH ₂) ₂ Cl, 75°	O (>98)	786, 147, 750, 4, 1, 27
	Me ₃ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 10 min	Ph Cl (77)	750, 751
	Me ₃ Sn	$Pd(PPh_3)_2Cl_2$ (5%), C_6H_6 , reflux, 8 h	Ph (60)	284
	Me ₃ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 20 min	Ph NO ₂ (97)	750, 751
	Bu ₃ Sn OEt	BnPd(PPh ₃) ₂ Cl (2%), 110-120°, 20 h	Ph H (77)	534
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), THF, 100°, 16 h	Ph (72)	305
	Bu ₃ Sn S	Pd(PPh ₃) ₄ (1%), HMPA, 0°, 3 h	$\begin{array}{c} O & O \\ Ph \end{array} \xrightarrow{O} \\ C \\ O \end{array} $ (51)	752
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	Ph TMS (73)	537

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	O Ph Ph I (91)	147, 750, 751
	Me ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.45%), CHCl ₃ , 65°	I + O II () I:II = 17:83	146
	Me ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.45%), HMPA, 65°	I + II () I:II = 10:90	146
	Me ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (4%), HMPA, 65°	I + II (—) I : II = 60:40	146
	Bu ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.45%), CHCl ₃ , 65°	$\mathbf{I} (6) + \bigcup_{\text{Ph}}^{O} \mathbf{Bu} \cdot \mathbf{n} $ III (34)	146
	Bu ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.45%), HMPA, 65°	I (9) + III (51)	146
	Bu ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (4%), HMPA, 65°	I (78) + III (6)	146
	(Bn) ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	I (95)	4
	Bu ₃ Sn Y ^{Ph} H D	BnPd(PPh ₃) ₂ Cl (4%), HMPA, 65°, 16 h	Ph $D $ H (71) $D $ H	27
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 5 h	CF_3 (64)	146
	Me ₃ Sn CN	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 5 min	Ph (100)	750
	Me ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (5%), C ₆ H ₆ , reflux, 8 h	Ph (70)	284
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 5 h	Ph (85) OMe	146
	$\begin{bmatrix} O \\ Et_3 Sn & Ph \end{bmatrix}$	[(ŋ³-C₃H₅)PdCl] ₂ (1%), P(OEt) ₃ , CO (120 psi), PhMe, 111°, 2 h	$Ph \xrightarrow{O} Ph$ (70)	308, 307
	Bu ₃ Sn Bu-n	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	$Ph \underbrace{\bigcup_{O}}_{O} Bu \cdot n (66)$	148
	Bu ₃ Sn Bu- <i>n</i>	Pd(PPh ₃) ₄ (5%), dioxane, 60°, 3 h	$\begin{array}{c} O \\ Ph \\ O \\ O \end{array} \qquad \qquad$	148
	Bu ₃ Sn OMe	1. Pd(PPh ₃) ₂ Cl ₂ , THF, 65° 2. Bu ₄ NF, THF, 0°	O Ph (>56)	532
	$Bu_3SnC \equiv C \longrightarrow OEt OEt OEt$	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	$Ph \xrightarrow{O} C \equiv C \xrightarrow{OEt} (68)$	149
	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	Ph OEt (75) OEt	763
	Bu ₃ Sn CO_2Et	BnPd(PPh ₃) ₂ Cl (1%), CHCl ₃ , reflux, 24 h	Ph $(70) E:Z = 1:8$	427

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			0	
	Bu ₃ Sn O	I. BnPd(PPh ₃) ₂ Cl (2.5%), Cul. THF, 50°	Ph (69)	268
	i-PrO O	2. H ₃ O ⁺	но о	
	Bu ₃ Sn i-PrO	 BnPd(PPh₃)₂Cl (2.5%), Cul. THF, 50° Piperidine 	Ph (79)	268
	Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (1%), CO (15 psi), C ₆ H ₆ , 80°	Ph O O (78)	268
	OAc Bu ₃ Sn Bu-1	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 36 h	$Ph \xrightarrow{O}_{OAc} Bu-t $ (50)	243
	R ₃ Sn Fe(CO) ₃	BnPd(PPh ₃) ₂ Cl (2.6%), Cl(CH ₂) ₂ Cl, HMPA, 80°, 2 h	Ph $Fe(CO)_3$ R = Me (90) R = Bu (43)	754
	$Bu_3SnC\equiv CPh$	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	Ph $C \equiv CPh$ (94)	149, 146
	Sn-C=CPh Bu ₂	Pd(PPh ₃) ₄ (5%), PhMe, 40°, 48 h	$ \begin{array}{c} O \\ Ph \end{array} C \equiv CPh $ (96)	376
	t [⊥] , t _n		0	
	Bu ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 24 h	Ph Ph I (82)	146
	" $E:Z = 95:5$	BnPd(PPn ₃) ₂ Cl (0.5%), CHCl ₂ , 65°	I ()	27
	" <i>E</i> : <i>Z</i> = 15:85	"	I (—)	27
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (5%), CO (15 psi), BHT, PhMe, 100°, 24 h	Ph (55)	250
	Bu ₃ Sn O O	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, THF, 50°, 60 min	Ph (73)	268
	CO ₂ Me Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), CHCl ₃ , 100°, 40 h	Ph (70)	787
	Bu ₃ Sn Pr- <i>n</i> OAc	Pd(PPh ₃) ₄ (4%), CuCN, PhMe, 75°, 60 h	$Ph \xrightarrow{O} Pr-n$ (57) OAc	243
	$Bu_3Sn \underbrace{OEt}_{F:Z = 85.15}$	BnPd(PPh ₃) ₂ Cl (2%), THF, 65°, 17 h	$\begin{array}{c} O & OEt \\ Ph & OEt \\ OEt \end{array} $ (81) $E:Z = 85:15$	539
	OTBDMS Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), PhMe, reflux	Ph (71) OTBDMS	457
	Me ₃ Sn	$Pd(PPh_3)_2Cl_2 (5\%),$ C_6H_6 , reflux, 8 h	Ph (71)	284

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	PdCl ₂ (5%), C ₆ H ₆ , reflux, 4 d	Ph (47)	284
	Me ₃ Sn	$Pd(PPh_3)_2Cl_2$ (5%), C_6H_6 , reflux, 10 h	Ph (69)	284
	Me ₃ Sn	PdCl ₂ (5%), C ₆ H ₆ , reflux, 5 d	Ph (49)	284
	Bu ₃ Sn N NPh	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 3 d	Ph NPh (54)	788
	Bu ₃ Sn NPh	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 3 h	Ph NPh (42)	788
	Bu ₃ Sn N Ph	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, reflux, 3 h	$Ph \underbrace{\bigvee_{N}}_{Ph} N \qquad (0)$	788
	Bu ₃ Sn N O	BnPd(PPh ₃) ₂ Cl (2.5%), CuI, THF, 50°, 15 min	Ph (92)	268
	NHAc Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, rt, 48 h	Ph CO_2Et (80)	375
	Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	CO_2Et (69) NHAC	375
	OMOM Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 15 h	O Ph Ph (80) OMOM	243
	OAc Bu ₃ Sn Ph	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 12 h	$Ph \xrightarrow{O} Ph (78) OAc$	243
	Bu ₃ SnCΞC- OTBDMS	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	Ph C \equiv C \longrightarrow OTBDMS (66)	149
	Bu ₃ Sn OTBDMS	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 24 h	Ph OTBDMS (78)	146
	R ₃ Sn N N OTBDMS	1. Pd(PPh ₃) ₂ Cl ₂ (3.7%), Cl(CH ₂) ₂ Cl, reflux, 20 h 2. AcOH	Ph N $R = Me (47)$ N $R = Bu (30)H$	459
	Bu ₃ Sn CO ₂ Bn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , 65°, 20 h	Ph I (55) CO ₂ Bn	146
	Bu ₃ Sn CO ₂ Bn	BnPd(PPh ₃) ₂ Cl (0.5%), THF, 65°	I + O CO_2Bn () 62:38	27

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OBn	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux, 4 h	Ph OBn (62)	789
	$Bu_3Sn \xrightarrow{OAc} C_7H_{15}-n$	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 18 h	$Ph \xrightarrow{O} C_7 H_{15} - n \qquad (74)$	243
	TMS Bu ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl (1%), 80°, 18 h	Ph Ph Ph (75)	256
	Bu ₃ Sn OMOM	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 38 h	$Ph \xrightarrow{O} Ph (30)$ OMOM	243
	Bu ₃ Sn CO ₂ Bu- <i>t</i>	Pd2(dba)3 (0.05%), HMPA, 100°, 1 h	Ph (78) Ph (78) CO_2Bu-t	247
	$Bu_3Sn \underbrace{C_8H_{17}}_{OAc}$	Pd ₂ (dba) ₃ , P(2-furyl) ₃ , THF, 25°, 16 h	$Ph \xrightarrow{i} C_8 H_{17} n \qquad (90)$	447, 768
	Bu ₃ Sn BnO H	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 95°, 18 h	$ \begin{array}{c} 0 \\ Ph \\ BnO \\ H \end{array} \xrightarrow{n} O \\ H $ (60)	242
	SiEt ₃ Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , CHCl ₃ , 60°, 24 h	$\begin{array}{c} O \\ Ph \end{array} \qquad (65) \\ Ph \end{array}$	255
	$\begin{array}{c} \operatorname{Bu_3Sn} \bigvee \begin{array}{c} \operatorname{C_7H_{15}-n} \\ \operatorname{O_2CC_6H_4NO_{2}-p} \end{array}$	Pd(PPh ₃₎₂ Cl ₂ (4%), CuCN, PhMe, 75°, 36 h	$\begin{array}{c} O \\ Ph \\ O_2CC_6H_4NO_2-p \end{array} (50) \\ O_2CC_6H_4NO_2-p \end{array}$	243
	$\mathbf{Bu}_{3}\mathbf{Sn} \xrightarrow{\mathbf{OBz}} \mathbf{C}_{7}\mathbf{H}_{15}-n$	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 18 h	$\begin{array}{c} O \\ Ph \end{array} \xrightarrow{C_7H_{15}-n} (70) \\ OBz \end{array}$	243
	$\begin{array}{c} OBz \\ 94\% \ ee \\ Bu_3Sn \\ C_7H_{15}-n \end{array}$	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 18 h	$C_7H_{15}-n$ (74) 92% ee OBz	243
	Ph Bu ₃ Sn N N Ph	$\begin{array}{l} \mbox{Pd}(\mbox{PPh}_3)_2\mbox{Cl}_2\ (5\%),\\ \mbox{Et}_4\mbox{NCl},\ \mbox{C}_6\mbox{H}_6,\ \mbox{reflux},\ 41\ \mbox{h} \end{array}$	Ph Ph N N N Ph N N N N N N N N	545
	$Bu_3Sn \xrightarrow{O}_{n-C_7H_{15}} N$	Pd(PPh ₃) ₄ (4%), CuCN, PhMe, 75°, 36 h	Ph - N - N - N - N - (45) + O - Bu - n	243
	$Bu_3Sn $ N Ph	BnPd(PPh ₃) ₂ Cl (5%), CO (35 psi), C ₆ H ₆ , 110°, 24 h	Ph Ph Ph Ph Ph Ph Ph Ph	757
	Bu ₃ Sn C ₈ H ₁₇ -n OTBDMS	$Pd_2(dba)_3$, $P(2-furyl)_3$, THF, rt, 6 h	$\begin{array}{c} O \\ Ph \end{array} \xrightarrow{C_8H_{17}-n} (83) \\ OTBDMS \end{array}$	447
	$\begin{array}{c} Bu_3Sn \underbrace{C_{15}H_{31}}_{CO_2Bu\text{-}t} \end{array}$	Pd ₂ (dba) ₃ (0.05%), HMPA, 100°, 16 h	$\begin{array}{c} O \\ Ph \\ \hline CO_2 Bu-t \end{array} $ (65)	247

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₂ N Me ₃ Sn Boc N S	[(η ³ -C ₃ H ₅)PdCl] ₂ (11%), proton sponge, THF, retlux, 7 h	(67)	666
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ (5%), dioxane, 60°, 2 h	Ph $SnBu_3$ (27)	148
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ (5%), dioxane, 100°, 30 h	Ph Ph (50)	148, 753
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ (5%), dioxane, 60°, 3 h	Ph Ph (40)	148
	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (5%), THF, 80°, 24 h or THF, 65°, 8 h	$Ph - \begin{cases} SnBu_3 \\ 0 \end{cases} (82)$	287, 546
	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, 100°, 32 h	$Ph \longrightarrow Ph $ (20)	287
	`O´ Me₃SnSnMe₃	$BnPd(PPh_3)_2Cl$ or $Pd(PPh_3)_4$ (5%), THF, reflux, 14 h	$\begin{array}{c} & \\ O \\ \\ Ph \end{array} (80) \\ Ph \end{array} SnMe_3 \end{array}$	309, 759
Br	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), С ₆ H ₆ , rt	Br O H (81)	156
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 24 h	Br (60)	146
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	Br (67) + (26)	4
	CF ₃ Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 65°, 5 h	O Br O O	262
	Bu ₃ SnPh	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 2 h	Br Ph (89)	146
0	Bu ₃ Sn OEt	BnPd(PPh ₃) ₂ Cl (1%), THF, 100°, 16 h	Br O (69)	305
CI	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	CI (97)	4
	CF ₃ Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 65°, 4 h	CI CF3 (93)	262

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1.4%), PhMe, 110°, 24 h	CI (59)	307
	Bu ₃ Sn OMe	BnPd(PPh ₃) ₂ Cl, CH ₂ Cl ₂ , 70°, 8 h	O O O Me (71)	305
	Bu ₃ Sn O O	Pd(PPh ₃) ₄ (1%), HMPA, rt, 3 h	$CI \xrightarrow{O} O O O O O O O O O O O O O O O O O O $	752
	Bu ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h		537
	Et ₃ Sn Cl	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), P(OEt) ₃ , CO (120 psi), PhMe, 111°, 2 h		308, 307
	Bu ₃ Sn CO ₂ Bu-r	Pd ₂ (dba) ₃ (0.05%), HMPA, 100°, 45 min	$Cl \xrightarrow{O} Ph (65) (65)$	247
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, 100°, 15 h	Cl SnMe ₃ (75)	759
F O Cl	Me ₃ SnPh	[(ŋ ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 10 min	F O Ph (86)	750
F CI	Bu ₃ Sn N R	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux, 1 h	$F \xrightarrow{V} K = Me (79)$ $R = Boc (59)$ R	425
NO ₂ O Cl	Me₄Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	NO ₂ O (73)	4
O ₂ N Cl	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C_6H_6 , rt	O_2N O_2N O_1 O_2N O_1 O_2 O_1 O_2 O_1 O_2 O_1 O_2 O_2 O_1 O_2 O	156
	Me ₄ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 10 min	O_2N O_2N O_1 (100)	750, 4, 146
	Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 20 min	O ₂ N (88)	146, 750
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (0.08%), C_6H_6 , reflux, 3 h		271
	Me ₃ Sn S	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 2 min	O-N (91)	750

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn OEt	BnPd(PPh ₃) ₂ Cl (0.5%), CO (15 psi), CHCl ₃ , 50°, 12 h	0 02N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250
	Bu ₃ SnC≡CTMS	$Pd(PPh_{3})_{2}Cl_{2} (1.8\%),$ $Cl(CH_{2})_{2}Cl, 84^{\circ}, 2 h$	$O_{2N} = C_{CTMS} $ (51)	149
	Me ₃ SnPh	BnPd(PPh ₃) ₂ Cl (0.4%), CHCl ₃ , reflux, 18 h	O ₂ N Ph (97)	146, 750, 751
	Me ₃ Sn F F F	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 24 h	$O_2 N \xrightarrow{F} F$ $F \xrightarrow{F} F$ (32)	750
	Bu ₃ Sn O O S	Pd(PPh ₃)4 (1%), HMPA, 0°, 0.5 h	$O_2 N \xrightarrow{O} O O O O O O O O O O O O O O O O O O $	752
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1%), THF, Et ₂ O, 20°, 2 h	0 0 ₂ N (70)	367, 590, 750
	Me ₃ Sn OMe	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 10 min	0 ₂ N OMe (66)	750
	Bu₃SnC≡CPh	Pd(PPh ₃) ₂ Cl ₂ (1.8%), Cl(CH ₂) ₂ Cl, 84°, 2 h	O ₂ N C ^S _{CPh} (57)	149
	$Bu_3Sn C_7H_{15} n$	Pd(PPh ₃) ₂ Cl ₂ (4%), CuCN, PhMe, 75°, 24 h	O_2N	243
	Bu ₃ Sn N Me	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux, 30 min	O ₂ N (75)	425
C.	Bu ₃ Sn O OBn OBn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), Cl(CH ₂) ₂ Cl, reflux, 15 min	O_2N O_2N OBn OB OBN OB OBN	423
CI	Bu ₃ SnH	$\begin{array}{l} Pd(PPh_3)_4 \ (1\%),\\ C_6H_6, \ rt \end{array}$	H (92)	156
	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1.4%), PhMe, 110°, 24 h	O O O (54)	307
	Bu ₃ Sn OEt	BnPd(PPh ₃) ₂ Cl (1%), THF, 100°, 16 h	O (52)	305
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₂ Cl ₂ (5%), PhMe, 100°, 16 h	SnMe ₃ (75)	759

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn H ₂ N O	BnPd(PPh ₃) ₂ Cl (2.5%), CuI, BHT, THF, 25°, 2 h	H_2N (65)	268
	Bu ₃ Sn O N O	BnPd(PPh ₃) ₂ Cl (2.5%), CuI, BHT, THF, 25°, 2 h	(73)	268
С ₁₁ о ст	Bu ₃ Sn O N O	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, BHT, THF, 25°, 3 h	$ \begin{array}{c} $	268
	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , r, 2 h	(65)	156, 769
C	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , π, 2 h	H (85)	156, 769
r-Bu	Me ₃ SnSnMe ₃	BnPd(PPh ₃) ₂ Cl (5%), THF, reflux, 45 h	r-Bu SnMe ₃ (50)	759
MEMO O Cl	Bu ₃ Sn N O	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, BHT, THF, 25°, 3 h	MEMO O (70)	268
Cl	Me ₄ Sn	Рd(CH ₃ CN) ₂ Cl ₂ , THF, п, 16 h	Ph 0 (>63)	790
	O Cl Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	147

TABLE XIV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ARYL SYSTEMS (Continued)

TABLE XV. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: BENZYL SYSTEMS

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	(93)	4
	Bu ₃ Sn H ₂ N O	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, THF, 50°, 15 min	0 H ₂ N O (53)	268
	Bu ₃ Sn	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h		148
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	O TMS (75)	537
	Bu ₃ Sn N Me	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux, 4 h	(70)	425
	Bu ₃ Sn N O	BnPd(PPh ₃) ₂ Cl (2.5%), CuI, THF, 50°, 1 h	0 N (64)	268
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h	$\bigcap_{i=1}^{O} \Pr (97)$	148
	Bu ₃ Sn C ₁₅ H ₃₁ -n CO ₂ Bu-r	Pd ₂ (dba) ₃ (0.05%), hydroquinone, CHCl ₃ , 25°, 48 h	$\bigcup_{\substack{I \\ CO_2 Bu-t}}^{O} C_{15}H_{31} - n (55)$	247
-	Bu ₃ Sn SnBu ₃	Pd(PPh3)4, dioxane, 100°, 30 h		148
	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , rt	0 H (85) + O H (<5)	156
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1.5%), CH ₃ CN, rt, 1.5 h		267
	Bu ₃ Sn H ₂ N O	BnPd(PPh ₃) ₂ Cl (2.5%), CuI, THF, 50°, 15 min	(93)	268
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	0 TMS (89)	537
	Bu ₃ Sn O O	 BnPd(PPh₃)₂Cl (2.5%), Cul, THF, 50°, 30 min Piperidine 	0 N 0 0 0 0	268
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), Cul, THF, 50°, 30 min	I (83)	268
CI		BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	0 TMS (75)	537

TABLE XVI. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKENYL SYSTEMS

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Bu_{3}Sn \underbrace{OEt}_{E:Z = 85:15}OEt$	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 17 h	$O = OEt \\OEt \\OEt $ (80) E:Z = 85:15	539
	Bu ₃ Sn	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h	(86) O	148, 753
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 24 h	TMS (74)	537
	Bu ₃ Sn	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h		753
	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	OEt (57)	763
	$Bu_3Sn \underbrace{OEt}_{E:Z = 85:15}$	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 17 h	O OEt (85) E:Z = 85:15 OEt	539
	Bu ₃ Sn NHBoc	BnPd(PPh ₃) ₂ Cl (5%)	NHBoc (71)	465
	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h	Ph (97)	148, 753
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 48 h	O (53)	150, 304
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 24 h	(54)	150, 304
	Me ₃ Sn	Rh(PPh ₃) ₃ Cl, CH ₂ Cl ₂ , 60°, 16 h	(47) (47) (15)	150, 304
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl , 80°, 3 h	O TMS (35)	256
C	Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ , dioxane, 100°		148, 753
	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	OEt (85)	763
CI	SiMe ₂ Bu- <i>n</i> Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , CHCl ₃ , 60°, 24 h	O SiMe ₂ Bu- <i>n</i> Cl (77)	255
	TBDMS Bu ₃ Sn Bu- <i>n</i>	Pd(CH ₃ CN) ₂ Cl ₂ , CHCl ₃ , 60°, 24 h	(87) Bu-n	255
	TBDMS Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , CHCl ₃ , 60°, 24 h	Cl (58)	255

TABLE XVI. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: ALKENYL SYSTEMS (Continued)

-

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₅	CI CI	Me ₄ Sn	BnPd(PPh ₃) ₂ Cl (0.05%), HMPA, 65°	(91)	4
	0	CF ₃ Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), HMPA, 65°, 10 h	(85)	262
		OMe Me ₃ Sn	BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , reflux, 1 h	OMe (83)	749
		Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), ТНF, п, 12 h		288
		Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (0.08%), C_6H_6 , reflux, 3 h		271
		Me ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (7%), THF, reflux, 3 h	$ \begin{array}{c} $	459
		R ₃ Sn N SO ₂ Me	$Pd(PPh_3)_2Cl_2$ (14%), THF, reflux	N SO ₂ Me N R = Me (72) R = Bu (62)	459
		Et ₃ Sn O	[(η ³ ·C ₃ H ₅)PdCl] ₂ (1%), POEt ₃ , CO (120 psi), PhMe, 111°, 2 h		308
		MeO Bu ₃ Sn O SnPh-Me	BnPd(PPh ₃) ₂ Cl (0.4%), Cl(CH ₂) ₂ Cl, 60°, 16 h or BnPd(PPh ₃) ₂ Cl. CO, CHCl ₃ , 65°, 16 h	$ \begin{array}{c} $	761, 762
		R PPh-Sp NMa	PhCOPd(PPh ₃) ₂ Cl (4%), THF, 40°	$ \begin{array}{c} & & \\ & & $	42
			PhCOPd(PPh ₃) ₂ Cl (4%), THF, 40°	$ \begin{array}{c} & \\ O \\ O \\ O \end{array} \end{array} \begin{array}{c} Ph \\ R = Me (-) \\ R = Ph () \end{array} $	42
		Bu ₃ SnC≡CBu- <i>n</i>	Pd(CH ₃ CN) ₂ Cl ₂ (5%), PPh ₃ , CHCl ₃ , rt, 6 h	$\bigvee_{O} C^{\leq CBu-n} $ (52)	794
		Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 48 h	O TMS (67)	537
		Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (1%), DMF, 20°, 2 h	OEt (78)	763
	0	Me ₃ SnSnMe ₃	BnPd(PPh ₃) ₂ Cl (5%), THF, reflux, 15 h	$\int_{O} SnMe_3 (80)$	309
	CI	Bu ₃ Sn O	Pd(PPh3)4, dioxane, 100°, 30 h	R = Me (70) $R = Ph (64)$	148, 753
		Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ , dioxane, 60°, 3 h	$SnBu_3$ (35)	148

TABLE XVII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: HETEROCYCLIC SYSTEMS

		Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			Bu ₃ Sn SnBu ₃	Pd(PPh ₃) ₄ , dioxane, 100°, 30 h		148, 753
		CI O	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, rt, 12 h	(95)	288
			Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 48 h	TMS (58)	537
			R ₃ Sn	 Pd(PPh₃)₂Cl₂ (3.7%), Cl(CH₂)₂Cl, reflux, 20 h AcOH 	$ \begin{array}{c} & & \\ & & $	459
464	C ₆		Bu ₃ Sn N SMe	Pd(PPh ₃) ₂ Cl ₂ (4%), THF, reflux, 6 h or Pd ₂ (dba) ₃ (3.7%), AsPh ₃ , THF, rt, 7 h	$ \begin{array}{c} & & & \\ N & & \\ N & & \\ Me & O \\ \end{array} $	151
		CI	Bu ₃ SnH	Pd(PPh ₃) ₄ (1%), C_6H_6 , rt	H (90)	156
		MeS N CI	Bu ₃ Sn N Me	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux	$ \begin{array}{c} $	151
			Bu_3Sn N - SO ₂ Ph	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux	MeS N Q Ma	151
			Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (3%), THF, reflux	MeS N N (25-31)	151
			Bu ₃ Sn O Ne	Pd(PPh ₃) ₂ Cl ₂ (7%), THF, reflux, 30 min	$MeS \longrightarrow N \longrightarrow O Me (73)$ $MeS \longrightarrow N \longrightarrow O \longrightarrow Me (73)$ $Me Me Me Me (73)$	459
465	C9		Me O-SiThex J Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (7%), THF, reflux, 30 min	Mes N	459
			Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.4%), HMPA, 70°, 3 h	Et (90)	795
	Cin	MeO ₂ C	Bu₃SnC≡CBu- <i>n</i>	Pd(CH ₃ CN) ₂ Cl ₂ (5%), PPh ₃ , CH ₂ Cl ₂ , 20°, 24 h	$MeO_2C \longrightarrow O C^{\leq CBu-n} (60)$	794
(10		Bu ₃ SnH	PdCl ₂ , PPh ₃	$ \begin{array}{c} O \\ H \\ H \\ O \\ O$	796
	C ₁₁	O N PhO ₂ S	Bu ₃ Sn N N SMe	Pd(PPh ₃) ₂ Cl ₂ (4%), THF, reflux, 6 h	$ \begin{array}{c} $	151

TABLE XVII. DIRECT CROSS-COUPLING OF ACYL CHLORID ES: HETEROCYCLIC SYSTEMS (Continued)

TABLE XVII. DIRECT CROSS-COUPLING OF ACYL CHLORIDES: HETEROCYCLIC SYSTEMS (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
С ₂ М	eO CI	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (2%), CHCl ₃ , 65°, 48 h	McO TMS (49)	537
C ₃	e ₂ N CI	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	Me ₂ N (71)	157
		Bu ₃ SnPh	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$Me_2N \xrightarrow{O} Ph$ (72)	157
Et	o CI	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (5%), h ydroquinone, PhMe, HMPA, 100° 5 h	Eto NMe ₂ (71)	157
С5 і-В	O Cl	Bu ₃ Sn O CHO	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, HMPA, 100°, 3 h	<i>i</i> -BuO CHO (70)	158
		Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (5%), hydroquinone, PhMc, HMPA, 100° 5 h	i-BuO R	157
		R H Me OMe NMe ₂		(66) (64) (66) (88) (72)	
C ₈ Ph	O N Me	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	Ph N Me (74)	157

TABLE XVIII. DIRECT CROSS-COUPLING OF CHLOROFORMATES AND CARBAMOYL CHLORIDES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$Ph_{N} \xrightarrow{N}_{Me} (18)$	157
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$Ph \underbrace{\bigvee_{N}^{O}}_{Me} $ (71)	157
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	Ph N (60)	157
	OEt Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$Ph \underbrace{\bigvee_{N}}_{Me} O (65)$	157
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	Ph N Me O (68)	157
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$ \begin{array}{c} Ph \\ N \\ Me \\ O \end{array} $ (73)	157
	Bu ₃ Sn O CHO	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, 100°, 1 h	Ph N CHO (90)	158
	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, 100°, 3 h	Ph N (62) Me CHO	158
	OHC Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, 100°, 4 h	$\begin{array}{c} O \\ Ph \\ N \\ Me \\ OHC \end{array} $ (70)	158
	Bu ₃ Sn / N Me	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, 100°, 3 h	$ \begin{array}{ccc} $	158
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	Ph N Me R	157
	R H Me OMe NMe ₂		(81) (48) (57) (50)	
	$\frac{Bu_3Sn}{E:Z = 80:20}$ Ph	BnPd(PPh ₃) ₂ Cl (4%), PhMe, 100°, 8 h	$Ph \underbrace{N}_{he} Ph (67)$	157
BnO Cl	Bu ₃ SnH	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , rt, 2 h	BnO H (17)	156
~9 O n-C ₈ H ₁₇ O Cl	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (5%), hydroquinone, PhMe, HMPA, 100°, 5 h	$n - C_8 H_{17} O \qquad (47)$	157
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (5%), hydroquinone, PhMe, HMPA, 100°, 5 h	$n-C_8H_{17}O$ (70)	157

TABLE XVIII. DIRECT CROSS-COUPLING OF CHLOROFORMATES AND CARBAMOYL CHLORIDES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn O	BnPd(PPh ₃) ₂ Cl (5%), hydroquinone, PhMe, HMPA, 100°, 5 h	$n - C_8 H_{170}$ (70)	157
	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (5%), hydroquinone, PhMe, HMPA, 100°, 5 h	$n-C_8H_{17}O$ (83)	157
	Bu ₃ Sn O CHO	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, HMPA, 100°, 3 h	$n - C_8 H_{170}$ (71)	158
	Bu ₃ Sn O	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, HMPA, 100°, 3 h	$n - C_8 H_{170}$ (53)	158
	Bu ₃ Sn N CHO Me	Pd(PPh ₃) ₂ Cl ₂ (0.5%), quinone, PhMe, HMPA, 100°, 3 h	$n-C_8H_{17}O$ Me CHO (70)	158

TABLE XVIII. DIRECT CROSS-COUPLING OF CHLOROFORMATES AND CARBAMOYL CHLORIDES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C4	CI CI Me ₃ Sr	SnMe ₃	BnPd(PPh ₃) ₂ Cl (10%), THF, rt, 2 h	0 (65)	152
6	Cl Cl O Me ₃ Sr	SnMe ₃	BnPd(PPh ₃) ₂ Cl (10%), THF, rt, 2 h		152
Co		℃I	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 7 h		770
- 7		`℃I nBu₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	O = O = O = O = O = O = O = O = O = O =	153, 154
	O SnB O) `Cl u ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$\begin{array}{c} O \\ \hline O \\ \hline O \\ \hline O \\ \hline O \\ \end{array} $ (15) + I (38)	154

TABLE XIX. INTRAMOLECULAR CROSS-COUPLING OF ACYL CHLORIDES AND CHLOROFORMATES

	Substrate Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀	O O SnBu ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$ \begin{array}{c} 0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ -0\\ $	153, 154
C ₁₁		BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ (41)	153, 154
C ₁₂	Bu ₃ Sn C ₇ H ₁₅ -n	BnPd(PPh ₃) ₂ Cl (4.5%), Cl(CH ₂) ₂ Cl, 37°, 20 h	$\bigcup_{C_7H_{15},n}^{O} (84)$	798
	$ Bu_3Sn \underbrace{Cl}_{C_6H_{13}\cdot n} $	BnPd(PPh ₃) ₂ Cl (4.5%), Cl(CH ₂) ₂ Cl, rt, 92 h	$\bigcup_{C_6H_{13}-n}^{U} (49)$	798
C ₁₃	$n-C_5H_{11}$ O $Bu-n$	Pd(PPh ₃) ₄ (0.4%), THF, reflux	$n - C_5 H_{11} \longrightarrow O $ (77)	155
	O O SnBu ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$O \xrightarrow{\uparrow \uparrow_7} O (55)$	153, 154
C ₁₄	$Bu_3Sn \xrightarrow{O} Cl$	BnPd(PPh ₃) ₂ Cl (4.5%), Cl(CH ₂) ₂ Cl, 37°, 20 h	$\bigcup_{C_9H_{19}\cdot n}^{O} (96)$	798
C ₁₅	O O O SnBu ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$0 \xrightarrow{(\uparrow \uparrow_9)} = 0 \qquad (53)$	153, 154
C ₁₆	O O O SnBu ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi). PhMe, 100°, 14 h	$O \xrightarrow{()_{9}} O (70)$	153, 154
C ₁₉	O O SnBu ₃	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	$O \xrightarrow{(-)_{13}} O \qquad (48)$	153, 154
C ₂₁	C_6H_{11} O O O $SnBu_3$	BnPd(PPh ₃) ₂ Cl (5%), CO (45 psi), PhMe, 100°, 14 h	C_6H_{11}	153, 154

TABLE XIX. INTRAMOLECULAR CROSS-COUPLING OF ACYL CHLORIDES AND CHLOROFORMATES (Continued)

473

J

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°, 36 h	TMS CO ₂ Et (61)	256
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2$ (2%), THF, reflux, 20 h		425
	Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	375
	Bu ₃ Sn	Pd (0)		800
	Bu-n Bu ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°, 55 h	Bu-n (61)	256
	Bu-t Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°, 450 h	$\begin{array}{c} Bu-t \\ (43) + \\ TMS \end{array} \begin{array}{c} (5) \\ TMS \end{array}$	256
	Bu ₃ Sn OEt TBDMS	BnPd(PPh ₃) ₂ Cl (1.6%), Cul, DMF, 50°, 7 h	OEt (95) TBDMS	49
	<i>n</i> -C ₈ H ₁₇ Bu ₃ Sn	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux	<i>n</i> -C ₈ H ₁₇ (—)	442
	R ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°	Ph R = Me, 170 h (51) R = Bu, 45 h (75) TMS	256
	TMS Me ₃ Sn Ph	BnPd(PPh ₃) ₂ Cl	$BrMe_2Sn$ (—)	254
	Bu ₃ Sn OEt TBDMS	BnPd(PPh ₃) ₂ Cl (1.6%), CuI, DMF, 50°	OEt (97) TBDMS	49
	R Bu ₃ Sn	Pd (0)	R = TMS (84) $R = n-Bu (62)$	800
	Bu ₃ Sn OBn	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux, 4 h	(87)	789
	PhO Me ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°, 48 h	PhO (50) TMS	256
	SnBu ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°	(70)	553
	Bu ₃ Sn- N SEM	Pd ₂ (dba) ₃ (5%), P(2-furyl) ₃ (20%), THF, 60°	(93) SEM	289, 425
	TsHN Bu ₃ Sn N SEM	Pd ₂ (dba) ₃ (10%), P(2-furyl) ₃ (20%), THF, 65°, 2.5 h	TsHN N SEM (89)	74

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OBn OBn	Dd (dba)	OBn OBn (71.74)	473 474
	Bu ₃ Sn OBn	THF, reflux	OBn (/1-/4)	423, 424
	SnMe ₃ Me ₃ Sn	BnPd(PPh ₃) ₂ Cl, 70°, 5 d	Ph I (54)	254
	SnMe ₃ Ma Sn	BnPd(PPh ₃) ₂ Cl, THF	I + SnMe ₃ (—)	254
	Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%), HMPA, 20°, 10 min	$\int SnMe_3$ (80)	314, 557
	Bu ₃ SnSnBu ₃	Pd(PPh ₃) ₂ Br ₂ (0.6%), PhMe, 110°, 15 h	SnBu ₃ (68)	547
CI CI	OEt Bu ₃ Sn	 Pd(PPh₃)₂Cl₂ (1%), PhMe, 100°, 20 h HCl (5% aq.) 	O (43)	269
	Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 6 h	(11)	161
	Me ₃ Sn	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 24 h	R = H (71) R = Me (16)	161
	Me ₃ SnC≡CPh	I	= (12)	161
	E:Z = 61:39	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 19 h	CO ₂ Bu-r (56)	248
	Me ₃ SnSnMe ₃	{(η ³ -C ₃ H ₅)PdCl] ₂ (5%), HMPA, 20°, 10 min	$SnMe_3$ (83)	314
	$Bu_3SnSnBu_3$	Pd(PPh ₃) ₂ Br ₂ (0.6%), PhMe, 110°, 15 h	SnBu ₃ (32)	547
	Me ₃ Sn S	Pd(PPh ₃) ₄ (5%), HMPA, 70°, 6 h	(40)	161
	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 6 h	(56)	161
	Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%), HMPA, 20°, 10 min	SnMe_3 (85)	314
OAc	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 5 h	(95)	161
	Et ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 4 h	O (72)	161
	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 4 h	(68)	161
	Me ₃ SnPh	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 6 h	Ph (100)	161
	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°	R = Cl, 20 h (82) R = R = Me, 6 h (100)	161
	OSnEt ₃	Pd(PPh_), (5%)	0 (76)	161
	OSnBu ₃	•HMPA, 20°, 4 h	0	101
		Pd(PPh ₃) ₄ (5%), THF, rt, 1 h	(90)	160
	Me ₃ Sn Ph	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 2.5 h	Ph (90)	161

0.1	G.			
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 4 h	(72)	161
	$Mc_3Sn \downarrow OEt$ Ph	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 2.5 h	OEt (77)	161
	SnMe ₃	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 4 h	(97)	161
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 40 min	SnMe ₃ (92)	314
	Bu₃SnH	$Pd(PPh_3)_4$ (6%), THF, rt	CI I + CI II (>90) 38:62	801
CI	Bu ₃ SnH	Pd(PPh3)4 (6%), THF, rt	I + II (>90) 35:65	801
ClCl	Bu ₃ SnH	Pd(PPh3)4 (6%), THF, rt	I + II (>90) 36:64	801
OAc	Bu ₃ SnH	Pd(PPh3)4 (6%), THF, rt	AcO + AcO (>90) 35:65	801
OAc C ₄ Br	Bu ₃ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (1%), maleic anhydride (5%), THF, 50°, 12 h	(40)	38, 39
	Bu ₃ Sn CO ₂ Et		CO2Et (35)	38, 39
	Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%) HMPA, 20°, 10 min Me ₂ CO, 20°, 10 min DMF, 20°, 10 min	$SnMe_{3} I + II $ I (57) + II (16) I (58) + II (14) I (42) + II (13)	314
Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 60°, 20 h	(64) + (22)	529
CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 60°, 20 h	(84)	529
	Bu ₃ Sn – ($Pd(PPh_3)_2Cl_2(1\%)$	$= \underbrace{\begin{pmatrix} N \\ 0 \end{pmatrix}}^{N} (47)$	426
CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), $C_6H_6, 60^\circ, 20 h$	(54) + 0 (18)	529
	Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%) HMPA, 20°, 10 min	I = I (41)	314
		$Me_2CO, 20^\circ, 10 min$	I (44) + II (12) I (42) + II (11)	
OAc	∫ SnBu₂ O SnBu₂	DMF, 20°, 10 min Pd(PPh ₃) ₄ , THF, rt	(43) + H (11)	322
	SnBu ₂	Pd(PPh ₃) ₄ , THF, rt	0 0 (77)	322

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO (67) + HO (10) E:Z = 10:1	164, 802
		Bu ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO $TMS + HO TMS$ (82-88) $F:Z = 7:1$ (18-12)	164, 802
		Me ₃ SnPh	Pd(CH3CN)2Cl2, DMF, H2O, rt	HO $(73) + HO$ (10) E:Z = 18:1 (10)	164, 802
482		Bu ₃ Sn CO_2Me E:Z = 4:1	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO CO_2Me (74) + CO_2Me (19)	803
		Me ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO Ph + HO Ph	164, 802
		BocHN Bu3Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	$HO = \begin{array}{c} \text{BocHN} \\ \text{(56)} \\ \text{(56)} \\ \text{(56)} \\ \text{(12)} \end{array}$	802
	Cl ₃ C Cl	Bu ₃ SnH	Pd(PPh ₃) ₄ (6%), THF, rt	Cl (>90) Cl	804
	Br	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl, CHCl ₃ , 65°	CN (65)	24
	C ₅ Br	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (0.3%), ZnCl ₂ , THF, 65°, 24 h	I (43)	35
		Sn (BnPd(PPh ₃) ₂ Cl (0.3%), C ₆ H ₆ , 100°, 24 h	I (70) + (10)	35
		Sn (BnPd(PPh ₃) ₂ Cl (0.3%), ZnCl ₂ , THF, 65°, 48 h	I (81)	35
		Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 60°, 20 h	(54)	529
483		Me ₃ Sn OH	Pd ₂ (dba) ₃ (2%), THF, 55°, 3 h	OH (90)	440
		Bu ₃ Sn-	$Pd(PPh_3)_2Cl_2$ (1%)		426
		$ \begin{array}{c} $	Pd(0)	R^{1} R^{2} R^{3} R^{3}	800
		R ¹ R ² Me Me Me -CH=CHCH=CH- TMS Me TMS -CH=CHCH=CH-	R <u>3</u> Me - Me	(56) (90) (90) (92)	

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OEt Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (0.5%), C ₆ H ₆ , 100°, 20 h	OEt OEt (99)	162, 805
	Bu ₃ Sn S	1. Pd(PPh ₃) ₂ Cl ₂ , C ₆ H ₆ 2. HCl	0 (83)	805
	Bu ₃ Sn	1. Pd(PPh ₃) ₂ Cl ₂ , C ₆ H ₆ 2. HCl	0 s (72)	805
	Bu ₃ Sn N	$Pd(PPh_3)_2Cl_2, C_6H_6$	OEt (60)	805
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2, C_6H_6$	OEt N (84)	805
	OSnBu ₃	1. Pd(PPh ₃) ₄ , THF 2. H ₃ O ⁺		162
	OSnBu ₃	1. Pd(PPh ₃) ₄ , THF 2. H ₃ O+		162
	OSnBu ₃	1. Pd(PPh3)4, THF 2. H3O+	(68)	162
	OSnBu ₃	1. Pd(PPh ₃) ₄ , THF 2. H ₃ O ⁺	O (69)	162
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), HMPA, 100°, 20 h	OEt (74)	162, 805
	Bu ₃ Sn NO ₂	$Pd(PPh_3)_2Cl_2, C_6H_6$	OEt NO ₂ (34)	805
	Bu ₃ Sn OSnBu ₂	$Pd(PPh_3)_2Cl_2, C_6H_6$	OEt NO2 (48)	805
		1. Pd(PPh ₃) ₄ , THF 2. H ₃ O*	(83)	162
	OSnBu ₃ Ph	1. Pd(PPh ₃) ₄ , THF 2. H ₃ O ⁺	Ph (68)	162
	OSnBu ₃	1. Pd(PPh ₃) ₄ , THF 2. H ₃ O ⁺	$Ph \xrightarrow{(71)}$	162
MeO ₂ C Br	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , PPh ₃ , CHCl ₃ , 65°	CO ₂ Me (87-100)	24
	Bu ₃ Sn Cl	 Pd(PPh₃)₂Cl₂, THF, reflux LiOH, H₂O, reflux 	HO ₂ C Cl (86)	806
	Bu ₃ Sn R Cl	 Pd(PPh₃)₂Cl₂, THF, reflux LiOH, H₂O, reflux 	HO_2C R = H (74) Cl R = Cl (73)	806
	Bu ₃ Sn F	 Pd(PPh₃)₂Cl₂, THF, reflux LiOH, H₂O, reflux 	HO ₂ C F (91)	806
	Bu ₃ Sn F	 Pd(PPh₃)₂Cl₂, THF, reflux LiOH, H₂O, reflux 	HO_2C R = H (72) F = R = F (71)	806
	Bu ₃ Sn CF ₃	 Pd(PPh₃)₂Cl₂, THF, reflux LiOH, H₂O, reflux 	HO ₂ C (74)	806

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO ₂ C Cl	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , PPh ₃ , CHCl ₃ , 65°	CO ₂ Me (74)	24
CO ₂ Me	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , PPh ₃ , CHCl ₃ , 65°	CO ₂ Me (94)	24
ОМОМ	Bu ₃ Sn S	$Pd(PPh_3)_2Cl_2, C_6H_6$	(42)	805
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2, C_6H_6$	0 (55)	805
	Bu ₃ SnPh	Pd(PPh ₃) ₂ Cl ₂ , THF, 120°	O (79)	805
	Bu ₃ Sn NO ₂	$Pd(PPh_3)_2Cl_2, C_6H_6$	0 NO ₂ (70)	805
	Bu ₃ Sn NO ₂	$Pd(PPh_3)_2Cl_2, C_6H_6$	0 (71) NO ₂	805
Br	Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%), HMPA, 20°, 15 min	SnMe ₃ (83)	314, 557
	Bu ₃ SnPh	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 24 h	, Ph (62)	24
	Bu ₃ Sn CO ₂ Bn	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 24 h	, CO ₂ Bn (72)	24
OAc	Me ₃ SnSnMe ₃	[(η^3 -C ₃ H ₅)PdCl] ₂ (5%), HMPA, 20°, 22 h	SnMe ₃ (26)	314
n-Pr Br	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 60°, 20 h	$n-\Pr$ (75) + $n-\Pr$ (22)	529
o	Me ₃ SnPh	$Pd(CH_3CN)_2Cl_2,$ DMF, H ₂ O, rt	OH (58) + (20) Ph Ph' (20)	164, 802
	Bu ₃ Sn	$Pd(CH_3CN)_2Cl_2,$ DMF, H_2O , rt	OH (71) + OH (4)	164
EtO ₂ C Br	Me ₃ Sn OH	Pd ₂ (dba) ₃ (2%), THF, 55°, 3 h	eto ₂ C OH (79)	440
EtO ₂ C Br	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 60°, 2 h	EtO ₂ C (60)	287
	Bu ₃ Sn O	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, 70°, 2 h	EtO ₂ C CO ₂ Et (67)	287
$MeO_2C_{n} = Br$ E:Z = 1:1	Bu ₃ Sn SnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ , PPh ₃ , CHCl ₃ , 80°, 3 h	$MeO_2C_{n_1}$ SnBu ₃ (76) $E:Z = 1:1$	468, 469
CO ₂ Et Br	Bu ₃ SnPh	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 24 h	CO ₂ Et (69)	24
	Bu ₃ Sn	Pd(dba) ₂ (3%), PPh ₃ (6%), THF, 50°, 24 h	EtO ₂ C (81)	24, 807
MeO ₂ C Br OMe	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl, CHCl ₃ , 65°	MeO ₂ C (56) OMe	24

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	OAc	Me ₃ SnPh	Pd(dba) ₂ (5%), LiCl, DMF, 55°, 19 h	I (47)	163
	CO ₂ Me	OSnBu ₃	Pd(PPh ₃) ₄ (5%), THF, rt, 24 h	(85)	160
		Bu ₃ SnOPh	Pd(PPh ₃) ₄ (5%), ТНF, гt, 30 min	OPh (53) + OPh (27)	322
20	o	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO., Ph (45)	164
2	C ₉ Ph Br	OTMS Bu ₃ Sn	 Pd(PPh₃)₄ (3%), PhMe, 100°, 24 h HCl (1 N) 	Ph (55)	457
		Bu ₃ Sn CO ₂ Et	Pd(PPh ₃) ₄ (5%), C_6H_6 , reflux, 24 h	Ph (70)	306
		E:Z = 13:87 Ph Bu ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°, 120 h	Ph Ph $(43) + Ph$ (6) TMS Ph TMS	256
		Me ₃ SnSnMe ₃	[(η ³ -C ₃ H ₅)PdCl] ₂ (5%), Me ₂ CO, 20°, 10 min	PhSnMe_3 (97)	314
	Physical	Bu ₃ Sn	$Pd_2(dba)_3$, $L = AsPh_3$, $P(2-furyl)_3$ or PPh_3 NMP, 40°	Ph (>95)	11
		Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 60°, 20 h	Ph (36) + (26)	529
		Bu ₃ Sn	$[(\eta^{3}-C_{3}H_{5})PdCl]_{2} (1\%),$ maleic anhydride (5%), THF, 50°, 12 h	Ph (64)	38
		Bu ₃ Sn Ph	PdCl ₂ (1.2%), PPh ₃ , Et ₄ NOTs, DMF, 50°, 1.14 F/mol, 10 mA	Ph Ph Ph (89)	808
20 F		Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (2%), THF, reflux	R = Me (80) $R = Boc (72)$	425
		Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	Ph CO ₂ Et (99)	375
		Bu ₃ Sn CO ₂ Et	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, rt	Ph CO ₂ Et (96)	375
	PhOAc	Bu ₃ SnH	Pd(PPh ₃) ₄ , THF	Ph (100)	810
		H Bu₃Sn ^{−C} ≈C ≈CH₂	Pd(PPh ₃) ₄ , THF, rt	$Ph \underbrace{C_{\leq CH}^{(37)} + Ph}_{C \leq C_{\leq CH}} \underbrace{C_{\leq C}^{(25)}}_{C \leq CH_2}$) 165
		Me ₃ Sn	Pd ₂ (dba) ₃ (5%), LiCl DMF, 23°, 22 h	Ph (80)	163
		$sn()_4$	Pd(PPh ₃) ₄ (4%), THF, reflux	Ph. (71)	36
		Bu ₃ Sn OH	Pd ₂ (dba) ₃ (5%), LiCl, DMF, 23°, 22 h	PhOH (69)	163

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

TADLE	AA. DIRECT CR033-C0011	LING OF ALL I'L AND	TROFAROTE ELECTROFTILES (Communed)	
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), THF, reflux	Ph (32)	36
	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), THF, reflux	Ph (69)	36
	OEt Bu ₃ Sn	1. Pd(dba) ₂ (5%), LiCl, DMF, 23°, 20 h 2. HCl (1 N)	Ph (88)	163
	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), THF, reflux	Ph (4)	36
	Me ₃ SnPh	Pd(dba) ₂ (5%), LiCl, DMF, 23°, 69 h	Ph Ph (57)	163, 36
	OSnBu ₃	Pd(PPh ₃) ₄ (5%), THF, rt	Ph (82-89)	160
	OSnBu ₃	Pd(PPh ₃) ₄ (5%), THF, rt	Ph ()	160
	$\frac{\text{CO}_2\text{Et}}{\text{Bu}_3\text{Sn}} = \frac{E:Z = 13:87}{E:Z = 13:87}$	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux, 24 h	Ph (80)	306
	Bu ₃ Sn Ph	PdCl ₂ (1.2%), PPh ₃ , Et ₄ NOTs, DMF, 50°, 1.4 F/mol, 10 mA	Ph (82) Ph	808, 36
	$Bu_3Sn \longrightarrow OTBDMS$ E:Z = 1:1	Pd(dba) ₂ (5%), LiCl, DMF, 23°, 62 h	PhOTBDMS (60) E:Z = 1:1	163
	Bu ₃ Sn OTBDMS	Pd(dba) ₂ (5%), LiCl, DMF, THF, 55°, 70 h	Ph OTBDMS (64)	163
	Bu ₃ Sn OBn	Pd(dba) ₂ (5%), LiCl, DMF, 60°, 72 h	Ph (70)	163
	Bu ₃ Sn SnBu ₃	1. Pd(PPh ₃) ₄ (10%), THF, rt, 19 h 2. HCl (1 N)	Ph (45)	811
	Me ₃ SnOPh	Pd(PPh ₃) ₄ (4%), THF, rt	Ph OPh (92)	322
	AcO AcO MOSnBu ₃	Pd(PPh ₃) ₄ (4%), THF, rt	$AcO AcO Ph $ (38) $\beta:\alpha = 2:1$	322
	MeO ₂ C AcO AcO AcO AcO MOSnBu ₃	Pd(PPh ₃) ₄ (4%), ТНF, п	$\begin{array}{c} \text{MeO}_2C\\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \text{Ph} \end{array} $ (33) $\beta:\alpha = 1:2$	322
	$ \begin{array}{c} Ph & O \\ O \\ O \\ Sn - O \\ Bu_2 \end{array} OMe $	Pd(PPh ₃₎₄ (4%), ТНF, п	$\begin{array}{c} Ph & O \\ HO & O \\ HO & O \\ O \\ O \\ Ph \end{array} $ $\begin{array}{c} Ph & O \\ O \\ HO \\ O \\ Ph \end{array} $ $\begin{array}{c} Ph & O \\ O \\ HO \\ O \\ O \\ Ph \end{array} $ $\begin{array}{c} Ph & O \\ O \\ O \\ O \\ Ph \end{array} $ $\begin{array}{c} O \\ O \\ O \\ O \\ Ph \end{array} $ $\begin{array}{c} O \\ O $	322
	BnO BnO BnO BnO OSnBu ₃	Pd(PPh ₃) ₄ (4%), THF, rt	BnO - O = O = O = O = O = O = O = O = O =	322
	Me ₃ SnSnMe ₃	Pd(PPh ₃) ₄ (5%), HMPA, 20°, 44 h	PhSnMe_3 (96)	314
Ph	Me ₃ SnPh	Pd(dba) ₂ (5%), LiCl, DMF, 23°, 19 h	Ph Ph (32)	163

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

497

ÓAc

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Sn OAc	Pd(dba) ₂ (5%), LiCl. DMF, 23°, 22 h	(80)	163
	Bu ₃ Sn BnOOO	Pd(dba) ₂ (5%), LiCl, DMF, 60°, 48 h	ÖAc BnO O (81)	163
	Bu ₃ Sn	Pd(dba) ₂ (5%), LiCl, DMF, 23°, 44 h	(40)	163
	Me ₃ SnPh	Pd(dba) ₂ (5%), LiCl, DMF, 23°, 43 h	$\sum_{\mathbf{Q}} \mathbf{P} \mathbf{h} $ (76)	163
		Pd(PPh ₃) ₄ (5%), THF, rt, 42 h	(78)	160
Ph OAc	Bu ₃ SnH	Pd(PPh ₃) ₄ , THF	Ph(99)	810
Civ	H Bu ₃ Sn ^{-C} ^C C CH ₂	Pd(PPh ₃) ₄ , THF	Ph CN CN (19)	165
	sn (Pd(PPh ₃) ₄ , THF	Ph CN ()	165
	OSnBu ₃	Pd(PPh ₃) ₄ , THF	Ph CN Ph CN $(-)$	37
	Me ₃ SnOR	Pd(PPh ₃) ₄ (5%), THF, rt	$\begin{array}{cc} Ph & R = Me \ (55) \\ OR & R = Ph \ (89) \end{array}$	322
	Bu ₃ SnH	Pd(PPh ₃) ₄ , THF, H ₂ O, NH ₄ Cl	PhCN (68)	810
O Cl.	Bu ₃ SnH	Pd(PPh ₃) ₄ , THF, BHT	Cl (99)	810
ĊN	H Bu ₃ Sn ^C C _C C _{CH2}	Pd(PPh ₃) ₄ , THF, rt	CI CN C ² CH (15)	165
MeO-	Bu ₃ Sn OMo	PdCl ₂ (1.2%), PPh ₃ , Et ₄ NOTs, DMF, 50°, 1.31 F/mol, 10 mA	MeO-CANCE (42)	808
Ph O	Me ₃ Sn	$Pd(CH_3CN)_2Cl_2,$ DMF, H ₂ O, rt	HO (80) $E:Z = 9:1$	164, 802
	Me ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	$HO \xrightarrow{Ph}_{Ph} (75) E:Z = 11:1$	164, 802
	Me ₃ Sn Ph	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO Ph (55) $E:Z = 10:1$	164, 802
O Ph	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ , DMF, H ₂ O, rt	HO Ph (8) + HO Ph (75)	164, 802

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

TABLE XX. DIRECT CROSS-COUPLING OF ALLYL AND PROPARGYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
⁷ Ph Br	Me₄Sn	Pd(2, 2'-bipyridine), (fumaronitrile) (1.5%) HMPA, 60°, 15 h	Ph (94)	171, 819, 19
	Bu ₃ Sn	Pd(PPh ₃) ₄ (0.7%), HMPA, 65°	Ph (100)	19
	Bu₄Sn	Pd(PPh ₃) ₄ (0.7%), HMPA, 65°	Ph Bu-n (42)	19
	Bu ₃ Sn O	Pd(PPh ₃) ₄ , DMF, 70°, 10 h	Ph Ph (45)	287
	Bu ₃ Sn	$Pd(PPh_3)_2Cl_2$ (1%)	Ph O (58)	426
	MeSnPh ₃	Pd(PPh ₃) ₄ (0.7%), HMPA, 65°	Ph (95)	19
	Me ₃ Sn Ph	Pd(PPh ₃) ₄ (0.7%), HMPA, 65°	Ph (89)	19
	Bu ₃ Sn	Pd(Ph-BIAN) (1%), HMPA, 20°, 20 h or DMF, 50°, 20 h	Ph (76)	819
	Bu ₃ Sn N Me	$Pd(PPh_3)_2Cl_2$ (2%), THF, reflux, 1 h	Ph N (70) Me	425
	Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, 65°	$Ph \underbrace{\qquad CO_2Et}_{NHAc} (100)$	375
	Bu ₃ Sn CO ₂ Et NHAc	Pd ₂ (dba) ₃ (5%), AsPh ₃ (40%), THF, rt	Ph CO ₂ Et (68) NHAc	375
	Bu ₃ Sn OEt TBDMS	BnPd(PPh ₃) ₂ Cl (1.6%), CuI, DMF, 50°, 7 h	Ph V TBDMS (88)	49
	n-C ₈ H ₁₇ Bu ₃ Sn	$Pd(PPh_3)_4$ (5%), C_6H_6 , reflux	$Ph \xrightarrow{n-C_8H_{17}} (-)$	442
	Bu ₃ Sn O	Pd(CH ₃ CN) ₂ Cl ₂ , DMF/HMPA (10:1), 60°, 2 h	Ph-OH O (70)	287
	Bu ₃ Sn OEt TBDMS	BnPd(PPh ₃) ₂ Cl (1.6%), CuI, DMF, 50°	Ph TBDMS (79)	49
	Ph Bu ₃ Sn TMS	BnPd(PPh ₃) ₂ Cl (1%), 80°	Ph (19) TMS	256
	Bu ₃ SnOBn	Pd(PPh ₃) ₄ (5%), C ₆ H ₆ , reflux	Ph (81)	789
	Bu ₃ Sn	Pd2(dba)3 (5%), P(2-furyl)3 (20%), THF, 60°, 3 h	Ph N (95) SEM	289
	MeO ₂ C	$Pd(PPh_{3})_{4}(5\%),$	MeO ₂ C (71)	290

TABLE XXI. DIRECT CROSS-COUPLING OF BENZYL ELECTROPHILE	S
---	---

TABLE XXI. DIRECT CROSS-COUPLING OF BENZYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄ OA	.с		Pd(PPh ₃) ₄ , THF, rt	(66) 0 (66)	322
	D	SnBu ₂	Pd(PPh ₃) ₄ , THF, rt	0 0 (77)	322
	Br	Me ₃ SnSnMe ₃	Pd(OAc) ₂ (10%), PPh ₃ , PhMe, 110°, 18h	(90)	645
	OAc OAc	Me ₃ SnSnMe ₃	Pd(OAc) ₂ (5%), PPh ₃ , 1-hexene, THF, reflux	(83)	824
		$\bigcirc O \\ O $	Pd(PPh ₃) ₄ , THF, rt	(94) 0	322
		SnBu ₂	Pd(PPh ₃) ₄ , THF, rt		322

TABLE XXII. INTRAMOLECULAR CROSS-COUPLING OF ALLYL AND BENZYL ELECTROPHILES

TABLE XXII. INTRAMOLECULAR CROSS-COUPLING OF ALLYL AND BENZYL ELECTROPHILES (Continued)

TABLE XXII. INTRAMOLECULAR CROSS-COUPLING OF ALLYL AND BENZYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₇		Me ₃ SnC≡CTMS	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%),	C [€] CTMS (−−)	223
OC	CO		DMF, 20°, 18 h	oc ^{re} -co co	
		Me ₃ SnC≡C−C≡CTMS	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	$OC^{-} \stackrel{Fe}{\underset{CO}{}} CO $ (44)	223
		Me ₃ SnC≋ _C Mn oc´⊥ _{CO} `co	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	$OC \xrightarrow{Fe} C \geq C \xrightarrow{(55)} OC \xrightarrow{Fe} C \otimes C \xrightarrow{(55)} OC \xrightarrow{Fe} C \otimes C \xrightarrow{(55)} OC \xrightarrow{(55)} OC \xrightarrow{Fe} C \otimes C $	223
		Me₃SnC≡CSnMe₃	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	223
·	Ţ	Me ₃ SnC≡C−C≡CSnMe ₃	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	$\begin{array}{c} OC \xrightarrow{Fe} C = C = C = C \xrightarrow{Fe} CO $	7) 223
I- OC	$ \begin{array}{c} $	Me₃SnC≡CH	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	$HC \leq C \qquad (25)$ $HC \leq C H \qquad C \leq CH \qquad C \leq CH$	219

TABLE XXIII. DIRECT CROSS-COUPLING OF ORGANOMETALLIC ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me₃SnC≡CR	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%),	$\begin{array}{c} RC \lesssim C \\ RC \lesssim C \\ RC \lesssim C \\ Fe \\ C \lesssim CR \end{array} $ (20)	
	D	DMF, 20°, 18 h	OC CO	
	TMS		(20)	219, 220
	Bu-t		(40)	219
			RC ^S C _C C ^S C C ^S C ^C	
	$Me_3SnC\equiv C-C\equiv CR$	Pd ₂ (dba) ₃ (5.5%),		220
		$AsPh_3$ (22%),	$\mathbf{R}\mathbf{C} \equiv \mathbf{C}^{-\mathbf{C}} = \mathbf{C}^{-\mathbf{C}} \mathbf{C} = \mathbf{C}^{-\mathbf{C}} \mathbf{C} = \mathbf{C}\mathbf{R}$	
	R	DMF, 20°, 18 h	0C CO	
	Pr-i		(26)	
	TMS		(34)	
	Bu-t		(57)	
	$C_5 H_{11} - n$		(30) PC: cP	
	Ma SaCTOR			
	Me3SIC=CK			
	R		OC Fe CO	
	<u></u>		СО	
		Pd ₂ (dba) ₃ (5.5%),	(18)	220
	Fe Sco	AsPh ₃ (22%),		
	co co	DMF, 20, 18 II		
	C ₈ H ₁₇ - <i>n</i>	Pd ₂ (dba) ₃ (5.5%),	(83)	219
		$AsPh_3$ (22%),		
		DMF, 20, 18 h		
	\geq	Pd(CH ₃ CN) ₂ Cl ₂ (30%),	(49)	220
	, Cr.	DMF, 20°, 48 h		
	oc´ [``co			
		$Pd_2(dba)_3(5.5\%),$	(69)	220
	Ma	AsPh ₃ (22%),		
	OC CO	DMF, 20°, 18 h		
	ĊO			
	^{−C} ≥C	Pd ₂ (dba) ₃ (5.5%),	(28)	220
	Mn	AsPh ₃ (22%),		
	0C CO	DMF, 20, 18 II		
	\sim	Pd ₂ (dba) ₃ (5.5%),	(35)	220
	L.	AsPh ₃ (22%),		
		DMF, 20°, 18 h		
\bigcirc				
Fe	$Bu_3SnC\equiv CR$	$Pd(CH_3CN)_2Cl_2(5\%),$	Fe	231
	R	THF, rt, overnight	OC CR	
	H		(67)	
	C≡CH		(51)	
	Pr-n Bu-r		(71) (74)	
	Ph		(74)	
	$Bu_3SnC{\equiv}C{-}C{\equiv}CSnBu_3$	$Pd(CH_{3}CN)_{2}Cl_{2}$ (5%),	$Fe-C\equiv C-C\equiv CFe$ (43)	231
		THF, rt, overnight		

TABLE XXIII. DIRECT CROSS-COUPLING OF ORGANOMETALLIC ELECTROPHILES (Continued)
	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈	OC Fe. Me	Bu ₃ SnC≡CH	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	OC ⁻ Fe, Me (86)	825
	СО	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), DMF, rt, 2 h	CO (91) OC Fe Me	826
		Bu ₃ SnC≡CSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	CO $C \equiv C = C$ $C \equiv C$ $C \equiv$	226
		Bu₃SnC≡CH	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	C ^{≤CH} (92) OC ^{-Mn} , CO	825
		Me₃SnC≕C−C≡CTMS	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%), DMF, 20°, 18 h	C = C = C - C = CTMS $C = C = CTMS$ $C = C = C = C = C = C = C = C = C = C =$	220
		Bu ₃ SnC≅C OC [·] Fe. Me	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	C = C = C $C = C $ $C = C $ $F e $ Me $C = C $ $C = C $ $F e $ Me $C = C $ $C = C$	825
		Bu ₃ SnC≥ _C OC / M OC CO	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	C = C = C $M = Mo (70)$ $M = W (81)$ $M = W (81)$ $M = W (81)$	825
		Bu₃SnC≡CSnBu₃	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF. 25°, 12 h	CC = C = C $CC = C $ $CC = C $ $CC = C $ $CR $ (90)	226
		Me ₃ SnC≡CR		$\begin{array}{c} & & & \\ RC \equiv C & & \\ RC \equiv C & & \\ RC \equiv C & & \\ OC & & \\ OC & & \\ OC & \\ $	
	co	<u>R</u> Me	$Pd(CH_3CN)_2Cl_2$ (4%),	(38)	218
		Pr-i C≡CPr-i	Pd ₂ (dba) ₃ (5.5%), AsPh ₃ (22%) DMF, 20°, 18 h	(17)), (11)	218 220
		C = CBu - t $C = CC_5 H_{11} - n$		(10) (5)	220 220
	oc Re, co	Bu₃SnC≡CH	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C = CH \qquad (94)$	825
	CO	Bu ₃ SnC≅ _C oc ^{-Mn}	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \equiv C \longrightarrow C \equiv C \oplus C \oplus$	825
		Bu ₃ SnC≥ _C . OC ⁻ Fe. Me	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	C = C = C = C $C = C = C = C = C = C = C = C = C = C =$	825

TABLE XXIII. DIRECT CROSS-COUPLING OF ORGANOMETALLIC ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ SnC≋C OC / Me OC CO	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \equiv C$ $M = Mo (68)$ $M = W (85)$ $M = W (85)$	825
C		Bu ₃ SnC≡CSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \equiv C \longrightarrow C^{(78)}$	226
C9		Me ₃ Sn-	Pd(PPh ₃) ₄ (4%), THF, reflux, 16 h	CC = CI (80) X = CI (80) X = I (64) CO	392
		Bu ₃ Sn	{(η ³ -C ₃ H ₅)PdCl] ₂ (10%), (<i>R</i>)-BINAP (12%), 40°, 18 h	$\begin{array}{c} & & \\ & & \\ & & \\ OC & & \\ & Cr & CO \\ & & \\ CO \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	222, 827
		Bu ₃ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (10%), (S)-(R)-PPFA (12%), 40°, 18 h	I (ee = 0%) + II (46) 87:13	222, 827
		Bu ₃ Sn	[(η ³ -C ₃ H ₅)PdCl] ₂ (10%), (<i>R</i>)-McO-MOP (24%), 0°, 181	I (ee = 0%) + II (46) 0:100	222, 827
		Me ₃ SnC≡CPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), CH ₂ Cl ₂ , rt, 72 h	$PhC \equiv C \longrightarrow C \equiv CPh \qquad (84)$ $OC \xrightarrow{C} C \xrightarrow{C} CO$	828
	HO HO OC CO	Me ₃ Sn-	Pd(PPh ₃) ₄ (4%), THF, reflux	HO HO Cr, CO CO X = CI (80) X = I (64)	391
		Bu₃SnC≡CH	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \stackrel{C \stackrel{<}{_{\sim}} CH}{\longrightarrow} (tr)$	825
		Bu ₃ SnC≥C OC FeMe	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$ \begin{array}{c} & & \\ & & $	825
		Bu ₃ SnC≡CSnBu ₃	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \equiv C \longrightarrow (64)$ $OC \longrightarrow Me \qquad Me \qquad Me \qquad Mo \ CO$ $OC \qquad CO \qquad OC \qquad CO$	226
		Bu₃SnC≡CH	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \stackrel{C \equiv CH}{\longrightarrow} (92)$	825
		Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 24 h	OC OC CO (58)	369
		Me₃SnC≡CMe	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 10 h	$C \stackrel{C \stackrel{\leq CMe}{\longrightarrow}}{OC \stackrel{W}{\longrightarrow} Me} (58)$	369
		Me ₃ Sn TMS	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 12 h	OC CO TMS (56)	369

TABLE XXIII. DIRECT CROSS-COUPLING OF ORGANOMETALLIC ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
			MeO ₂ C	
	Bu ₃ Sn CO ₂ Me	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, п, 12 h	(55) OC Me	369
	Bu ₃ SnPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 72 h	OC V Me OC CO	369
	Me ₃ SnC≡CBu-n	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 4 h	C≡CBu-n (56) OC V Me OC CO	369
	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, п, 12 h	$OC \xrightarrow{W} Me OC \xrightarrow{W} Me OC \xrightarrow{W} Me (5)$	369
	Me ₃ SnC=CPh	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 12 h	$OC \xrightarrow{C \leq CPh} (29)$	369
	Bu ₃ SnC≅C OC [−] Fe _− Me	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 12 h	$OC \xrightarrow{V} Me OC \xrightarrow{Fe} Me OC \xrightarrow{Ke} Me$	825
	Bu ₃ SnC≥C OC / Me OC CO	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, rt, 12 h	$C \equiv C \longrightarrow C \equiv C \longrightarrow (76)$ $OC \longrightarrow Me OC \longrightarrow Me OC \longrightarrow Me$ $OC \longrightarrow C O OC CO$	825
2	Bu₃SnC≡CSnBu₃	Pd(CH ₃ CN) ₂ Cl ₂ (2%), DMF, п, 12 h	$C \equiv C \longrightarrow (77)$	226
C_{10} $ C_{1}$ $OC - C_{1}$ C_{1} C_{1} C_{1} C_{1}	Bu ₃ Sn	1. Pd(PPh ₃) ₄ (2%), THF, 70°, 15 h 2. I ₂	(72)	227
	Bu₄Sn	1. Pd(PPh ₃) ₄ (2%), THF, 70°, 15 h 2. I ₂	Bu- <i>n</i> (75)	227
	Me ₃ Sn OMe	Pd(PPh ₃) ₄ (0.7%), THF, 70°, 22 h	OMe (62)	829
	Me ₃ Sn SnMe ₃ HO	Pd(PPh ₃) ₄ (0.7%), THF, 70°, 22 h	$OH \qquad (34)$	829
	Me ₃ Sn SnMe ₃ OH	Pd(PPh ₃) ₄ (0.7%), THF, 70°, 22 h	$\begin{array}{c} Me_3Sn \\ OH \\ OC \\ CO \\ CO \end{array} $ (85)	829
	Me ₃ Sn SnMe ₃ Ph	Pd(PPh3)4 (0.7%), THF, 70°, 22 h	$ \begin{array}{c} $	829

TABLE XXIII.	DIRECT CROSS-COUPLING OF ORGANOMETALLIC ELECTROPHILES (Continued)
--------------	---	------------

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu3Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 16 h	$MeO \xrightarrow{C} Cr_{CO}^{Pr-n} (91)$	217
	Bu₃SnC≡CTMS	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 37 h	$MeO \longrightarrow C \equiv CTMS $ $OC \longrightarrow CO $ $OC \longrightarrow CO $ (79)	217
OC Fe, I	$Bu_3SnC \equiv C - OC - OC - OC - OC - OC - OC - OC$	Pd(CH ₃ CN) ₂ Cl ₂ (3%), DMF, rt, overnight	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ } \\ \end{array} } \\ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ \end{array} } \\ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ } \\ \end{array} \\ \end{array} } \\ } \\ } \\ \end{array} } \\ } \\ } \\ \end{array} } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\	230
MeO SMT OC Cr CO CO	Bu ₃ Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 24 h	$MeO \xrightarrow{Pr-n} (99)$ $SMT \xrightarrow{C} CO CO$	217
MeO OTT OC Tr. Pr-n OC CO	Me ₄ Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 132 h	$MeO \xrightarrow{c'r}_{CO} Pr-n $ (41) OC $\xrightarrow{c'r}_{CO} CO$	217
	Bu3Sn	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 15 h	$MeO \xrightarrow{cr.} Pr-n \\ OC \xrightarrow{cr.} CO \\ CO $	217
Cia	Bu₃SnC≡CMe	Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 83 h	$MeO \xrightarrow{c_{r}} C \equiv CMe (50)$	217
$Me_2N \longrightarrow OTF \\ OC' I CO \\ CO' CO' CO' CO' CO' CO' CO' CO' CO' CO'$	Bu ₃ Sn	l. Pd(PPh ₃) ₄ (2%), LiCl, THF, 65°, 17 h 2. I ₂	Рт- <i>п</i> (87) NMe ₂	217
CCSi(Pr-i) ₃	Me₃SnC≡CTMS	Pd(CH ₃ CN) ₂ Cl ₂ (6%), H ₂ O, DMF, rt, 36 h	C ² CSi(Pr-i) ₃ C ² CSi(Pr-i) ₃ C ² CCO CCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	224
OC A PPh3	Bu ₃ SnC _{€C} OC W Me OC CO	Pd(CH ₃ CN) ₂ Cl ₂ (5.5%), DMF, 25°, 12 h	$C \equiv C - C = C - C = C - C = C - C = C - C = C - C = C - C = C =$	825
²²⁷ <i>i</i> -Pr ₃ SiO <i>i</i> -Pr ₃ SiO OC OC Cr CO	Me ₃ Sn-	Pd(PPh ₃) ₄ (4%), THF or C_6H_6 , reflux	$i-Pr_{3}SiO (18)$ $i-Pr_{3}SiO Cr O (18)$	391, 392

TABLE XXIII.	DIRECT CROSS	COUPLING OF	ORGANOMETALL	IC ELECTROPHILES	(Continued)
--------------	--------------	-------------	--------------	------------------	-------------

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Cl	MeI	Bu ₃ Sn	$Pd(dba)_2 (0.5\%), PPh_3 (2\%), C_6H_6, 60^\circ, 20 h$	$\bigcup_{i=1}^{O} (0) + MeSnBu_3 (26)$	529
	CF ₃ I	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 3 h	F ₃ C (11)	210
		Bu ₃ Sn <u>Ph</u>	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 3 h	F ₃ C (11)	210
	O ₂ N Br	Bu ₃ SnSnBu ₃ + TMSCI	Pd(PPh ₃) ₄ (10%), tetralin, 80°, 20 h	$O_2 N \frown TMS (0)$	832
C ₂	MeSO ₂ Cl	Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 15 min	Me S Ph (90)	229
	F ₃ C I	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 4 h	F ₃ C Ph (38)	210
		Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 4 h	F ₃ C Ph (35)	210
C3	NC Br	Bu ₃ SnSnBu ₃ + TMSCl	Pd(PPh ₃) ₄ (10%), tetralin, 80°, 20 h	NC TMS (61)	832
	Br	Me ₃ SnTMS	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 5 h	OTMS (67)	833
	MeO ₂ C Br	Bu ₃ Sn	D ₇₁₇ -Pd(0) on polymer, Me ₂ CO, reflux, 25 h	MeO ₂ C (91)	535
C4		Bu ₃ SnPh	D ₇₁₇ -Pd(0) on polymer, Me ₂ CO, reflux, 25 h	MeO ₂ C Ph (90)	535
	n-C4F9I	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , 70°, 4 h	<i>n</i> -C ₄ F ₉ (52)	210
		Bu ₃ Sn OH	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , 70°, 4 h	<i>n</i> -C ₄ F ₉ (68)	210
		(E) or (Z) Bu_3Sn Ph	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , 70°, 4 h	$n-C_4F_9$ Ph (70)	210
	O Br	Me ₃ SnTMS	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 5 h	OTMS (72)	833, 832
	O Br	OSnBu ₃	$Pd(PhCN)_2Cl_2 (5\%),$ $C_6H_6, 80^\circ, 20 h$		834
		Bu ₃ SnSnBu ₃ + TMSCl	Pd(PPh ₃) ₄ (10%), tetralin, 80°, 20 h	OTMS (77)	832, 833
	MeO ₂ CC≡CBr	OEt Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 2 h	$MeO_2CC \equiv C \xrightarrow{OEt} (52)$	215
		Bu ₃ Sn OEt OEt	Pd(PPh ₃) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 15 h	OEt (73) OEt (73) $MeO_2CC \equiv C$	215
	o X		Pd(PPh ₃) ₂ Cl ₂ (1%), THF, 50°, 12 h	O = X = Br (73) O = X = I (82)	208
	o V I	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ (1%), THF, 50°, 12 h	0 (97)	208
	EtO ₂ C Br	$Bu_2Sn()_2$	Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 6 h	EtO ₂ C (67)	208
		OSnBu ₃	Pd(PPh ₃) ₂ Cl ₂ (1%), PhMe, 100°, 9 h	EtO_2C (41) O	208

Substrate	Stannane Conditions		Product(s) and Yield(s) (%)	Refs.	
	Bu ₃ SnPh	D_{717} -Pd(0) on polymer, Me ₂ CO, reflux, 25 h	EtO_2C Ph (94)	535	
	Bu ₃ SnSnBu ₃ + TMSCl	Pd(PPh ₃) ₄ (10%), HMPA, 80°, 20 h	EtO_2C TMS (79)	832	
MeO Cl	Bu ₃ Sn CO ₂ Et	Pd(PPh ₃) ₄ (2-5%), DMF, 100°, 12 h	$\bigcup_{\mathbf{U}} CO_2 Et $ (60)	441	
Br		Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h		834	
	Bu ₃ SnSnBu ₃ + TMSCI	Pd(PPh ₃) ₄ (10%), tetralin, 80°, 20 h	OTMS (75)	832, 833	
O Br	Me ₃ SnTMS	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 5 h	OTMS (93)	833	
O Br	OSnBu ₃	Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h	(70)	834	
	OSnBu ₃	Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h		834	
EtO ₂ C Br	Bu ₃ SnSnBu ₃ + TMSCl	Pd(PPh ₃) ₄ (10%), HMPA, 80°, 20 h	EtO_2C TMS (49)	832	
TMSC≡CBr	H ₂ N Bu ₃ Sn N SEM	Pd(PPh3)4 (0.7%), DMF, 110°, 0.5 h	H_2N $TMSC \equiv C$ N SEM (95)	74	
TMSC≡Cl	Bu ₃ Sn TMS	Pd(PPh ₃) ₄ (5%), THF, 20°, 24 h	TMSC ² C TMS (0)	422	
	Bu ₃ Sn-V SEM	Pd(PPh ₃) ₄ (0.7%), DMF, 110°, 1 h	$TMSC \equiv C - \bigvee_{\substack{N \\ SEM}} (88)$	289	
		Pd(PPh ₃) ₄ (10%), CuI (20%), DMF, 80°, 20 min	MOMO O N C CTMS	170	
-C=Cl	Bu ₃ Sn	Pd(PPh ₃) ₂ Cl ₂ , DMF		214	
<i>n</i> -BuC≡CBr	OEt Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 20 h	$n-BuC \equiv C \xrightarrow{OEt}_{OEt} (80)$	215	
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 20 h	OEt (28)	215	

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
0, .0			0, ,0	
CI S [°] CI	Bu ₃ Sn Ph	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 15 min	Ph (75)	229
n-C ₆ F ₁₃ I	Bu ₃ Sn	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , rt, 1 h	$n-C_6F_{13}$ (100)	210
	Me ₃ SnC≡CPh	Pd(PPh ₃) ₄ (10%), C_6H_{14} , 70°, 6 h	$n - C_0 F_{13} C \equiv CPh$ (27)	210
	$Me_3SnC \equiv CC_6H_{13}-n$	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , 70°, 6 h	$n - C_6 F_{13} C \equiv C C_6 H_{13} - n$ (55)	210
Q	$Me_3SnC \equiv C + \int_4^{OTHP}$	Pd(PPh ₃) ₄ (10%), C ₆ H ₁₄ , 70°, 6 h	$n - C_6 F_{13} C \equiv C \left(\begin{array}{c} O T H P \\ 4 \end{array} \right) $ $O T M S $ (60)	210
CI	Me ₃ SnTMS	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 80°, 5 h	(52)	833
O t-Bu Br	OSnBu ₃	Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h	<i>t</i> -Bu O (83)	834
	OSnBu ₃	Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h	r-Bu (35)	834
		Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h	<i>t</i> -Bu (95)	834
	OSnBu ₃ Bu-t	Pd(PhCN) ₂ Cl ₂ (1%), C ₆ H ₆ , 80°, 20 h	$ \begin{array}{c} O \\ t-Bu \\ O \\ O \end{array} $ $ \begin{array}{c} Bu-t \\ O \end{array} $ $ \begin{array}{c} (97) \\ O \end{array} $	834
	Bu ₃ SnSnBu ₃ + TMSCI	Pd(PPh ₃) ₄ (10%), tetralin, 80°, 20 h	otms (81)	832, 833
	Bu₃SnC≡CPh	Pd(PPh ₃) ₄ (4%), CCl ₄ , 80°, 12 h	$TMS \frown C \equiv CPh (61)$	207
	Bu ₃ SnC≡CR $\frac{R}{TMS}$ C≡CEt Bu-n	Pd(PPh ₃) ₂ Cl ₂ (1%), C ₆ H ₆ , 70°, 5 h	$RC^{\neq C} \xrightarrow{(60)} C \stackrel{(60)}{(31)} (70)$	835
	C(Me) ₂ OMe Ph 1-cyclohexenyl		(64) (65) (74)	
	$Bu_{3}SnC \equiv C \longrightarrow O$ $(CH_{2})_{n}$ $Bu_{3}SnC \equiv C \longrightarrow O$	Pd(PPh ₃) ₂ Cl ₂ (5%), LiClO ₄ , PhMe, 50°	$PhN = \underbrace{C^{2}C^{2}C^{0}}_{CH_{2})n} \begin{array}{c} n = 3 (31) \\ n = 4 (42) \\ n = 5 (45) \\ n = 6 (42) \end{array} $	212
	$ Bu_3SnC Bu_3SnC \\ C C \\ C \\ C \\ C \\ C \\ O \\ n O $	Pd(PPh ₃) ₂ Cl ₂ (5%), LiClO ₄ , PhMe, 50°	C $n = 2$ (52) C C $n = 3$ (32)	212
	$Bu_{3}SnC \equiv C \xrightarrow{X} (CH_{2})_{n}$ $Bu_{3}SnC \equiv C \xrightarrow{X} X$	Pd(PPh ₃) ₂ Cl ₂ (5%), LiClO4, PhMe, 50°	$PhN \xrightarrow{C^{<}C^{<}X} X = CH_2 (34)$ $C^{<}C X X = NPr-i (41)$	212

TABLE XXIV.	DIRECT CROSS	-COUPLING OF	MISCELLANEOUS	ELECTROPHILES	(Continued
-------------	--------------	--------------	---------------	---------------	------------

TABLE XXIV. DIRECT CROSS-COUPLING OF MISCELLANEOUS ELECTROPHILES (Continued)

TABLE XXIV. DIRECT CROSS-COUPLING OF MISCELLANEOUS ELECTROPHILES (Continued)

Substrate	Stannanc	Conditions	Product(s) and Yield(s) (%)	Refs.
EtO C E CBr OEt	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), hydroquinone, DMF, 0°, 4 h	$EtO - C \equiv C - (78)$ OEt	215
	Bu ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (5%), hydroquinone, DMF, 0°, 9 h	EtO CEC (44)	215
	Bu ₃ Sn OEt	Pd(PPh ₃) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 72 h	EtO OEt EtO EtO	215
0	Bu ₃ Sn OEt	Pd(CH ₃ CN) ₂ Cl ₂ (5%), hydroquinone, DMF, 20°, 96 h	$EtO - C \equiv C$ (58)	215
<i>n</i> -C ₆ H ₁₃ O Br	Bu ₃ SnPh	D ₇₁₇ -Pd(0) on polymer, Me ₂ CO, reflux, 25 h	$n - C_6 H_{13} O$ Ph (84)	535
	Bu₃SnC≡CPh	Pd(PPh ₃) ₂ Cl ₂ (4%), PhEt, 70°, 5 h	Er C C C C Ph	211
<i>n</i> -C ₈ H ₁₇ O X	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), Cl(CH ₂) ₂ Cl, 24°	$n-C_8H_{17}$ X = Br, 1.5 h (84) X = Cl, 10 h (84)	207
<i>n</i> -C ₈ H ₁₇ O Br	Bu ₃ SnC≡CPh OEt	Pd(PPh ₃) ₄ (4%), CH ₂ Cl ₂ , 40°, 8 h	$n-C_{g}H_{17}$ $C \equiv CPh$ (55)	207
<i>n</i> -C ₈ H ₁₇ O Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%), C ₆ H ₆ , 80°, 12 h	$n-C_8H_{17}$ O (81)	207
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (4%), C ₆ H ₆ , 80°, 2 h	$n-C_8H_{17}$ Ph (86)	207
C ₁₀	$Bu_3SnC\equiv CPh$	Pd(PPh ₃) ₄ (4%), C ₆ H ₆ , 80°, 1.5 h	$n-C_8H_{17}$ $C\equiv CPh$ (71)	207
Ph Cl	$Bu_3SnC\equiv CPh$	Pd(PPh ₃) ₄ (4%), CCl ₄ , 65°, 12 h	$\begin{array}{c} OMe \\ C \\ $	207
S ^C CI	Bu ₃ Sn	Pd(PPh ₃₎₄ (1%), THF, 65-70°, 3 h	(60)	229
	Bu ₃ SnOTHP	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 30 min	(85) 0, ,0	229
	Bu₃SnC≡CPh	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 15 min	^O S ² C [≤] _{CPh} (0)	229
	Bu ₃ SnPh	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 15 min	O 0 0	229
C	Bu ₃ Sn C ₆ H ₁₃ -n	Pd(PPh ₃) ₄ (1%), THF, 65-70°, 30 min	C ₆ H ₁₃ - <i>n</i> (70)	229
$n-BuN = \begin{pmatrix} Cl \\ Ph \end{pmatrix}$	Ph ₄ Sn	Pd(PPh ₃) ₂ Cl ₂ (4%), PhEt, 130°, 63 h	$n-\operatorname{BuN} \stackrel{\operatorname{Ph}}{\longrightarrow} (25)$	211
Ph Cl	Bu ₃ SnC≡CPh	Pd(PPh ₃) ₄ (4%), C ₆ H ₆ , 80°, 12 h	Ph C (0)	207
	Ph₄Sn	Pd(PPh ₃) ₂ Cl ₂ (4%), PhEt, 130°, 15 h	- N = S (63)	211

TABLE XXIV. DIRECT CROSS-COUPLING OF MISCELLANEOUS ELECTROPHILES (Continued)

TABLE XXIV.	DIRECT CROSS	-COUPLING OF N	ISCELLANEOUS	ELECTROPHILES (Continued)
-------------	--------------	----------------	--------------	-----------------	------------

TABLE XXIV. DIRECT CROSS-COUPLING OF MISCELLANEOUS ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄		Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^{<i>a</i>} , THF, 50°	(40)	324
C ₅		Me ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5h	CHO (35)	331
		R ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ⁴ , THF, 45-50°	R = Me, 6 h, (86) R = Bu, 18 h, (70)	324
		E:Z = 1:6 Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 24 h	(63) E:Z = 2.5:1	324
		Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 50°		324
		Bu ₃ SnC≡CPr- <i>n</i>	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ⁴ , THF, 45-50°, 7 h	$C_{\mathcal{Z}CPr-n} $ (54)	324
		Bu ₃ Sn <u>Ph</u>	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 8 h	о Рh (60)	324
		Bu ₃ Sn CO ₂ Bn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 10 h	CO ₂ Bn (40)	324
	o I	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	(0) + (100)	331
	0 I	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	O CHO (51)	325, 331
		Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ⁴ , THF, 45-50°, 2 h	(50) O	324
		E:Z = 1:6 Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^{<i>a</i>} , THF, 45-50°, 55 h	O = 0 = 0 = 0 $O = 0 = 0$ $(56) E:Z = 1:0.9$	324
C ₆		Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	CHO (53)	325, 331
		Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 45-50°, 24 h	(93)	324
		$\int \frac{1}{Bu_3Sn} \sum_{z} E:Z = 1:6$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 45-50°, 24 h	0 (83) E:Z = 1:0.7	324
		Bu ₃ SnPh	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ⁴ , THF, 45-50°, 48 h	O Ph (40)	324
		Bu ₃ Sn CO ₂ Bn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 45-50°, 80 h	$O_{2Bn} (45) E:Z = 4:1$	324
	OTf	OEt Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (2%), LiCl, THF, 55°, 18 h	OEt (89)	270

TABLE XXV.	CARBONYLATIVE CROSS-COUPLING OF ALKENYL ELECTROPHILES

_	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	n-Bu I	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	n-Bu CHO (88)	331
	n-Bu I	R ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 35-40°	R = Me, 5 h, (65) R = Bu, 12 h, (70)	324
		Me_3Sn $E:Z = 1:2$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ⁴ , THF, 45-50°, 44 h	<i>n</i> -Bu (70)	324
		$Bu_3Sn = E:Z = 1:6$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 48 h	n-Bu (62)	324
		R ₃ SnPh	CO (50 psi), Pd(PPh3)2Cl2 (2%)4, THF, 45-50°	n-Bu Ph R = Me, 18 h, (65) R = Bu, 23 h, (40)	324
	n-Bu OTf	Mc ₃ Sn TMS	CO (15 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°	о n-Bu ТМS	334
	° I	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	О I (20) + I (69)	331
	·	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	I (84) + II (18)	325. 331
C ₇	∫ I	Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 65°, 5 h	(65)	324
	OTT	Bu3SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	CHO I (13) + II (54)	331
		Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	I (53) + II (8)	331
		Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°	O (77)	334
	OTf	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 50°	CHO (53) + (4)	334
		Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (4%), THF, 55°	(78)	331
	<i>n</i> -C ₅ H ₁₁	Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), THF, 55-60°, 1.5 d	$n-C_5H_{11}$ (52)	287
C ₈	Ph Br	Me ₄ Sn	CO (15 psi), PhPd(PPh ₃) ₂ I (0.2%), HMPA, 120°, overnight	Ph (62)	323
	Ph	Bu ₃ Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^a , THF, 45-50°, 13 h	Ph (65)	324
		Me_3Sn $E:Z = 1:2$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 12 h	Ph (75)	324

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Bu_3Sn = E:Z = 1:6$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^{<i>a</i>} , THF, 45-50°, 22 h	Ph (40)	324
	Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₄ (3%), THF, 50°, I d	$Ph \longrightarrow O (40) + O (20)$	287
	Bu ₃ Sn Ph	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 45-50°, 66 h	Ph Ph (70)	324
	Bu3Sn	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%)", THF, 65°, 8 h	(74)	324
↓ 0	Bu_3Sn $E:Z = 1:6$	CO (50 psi), Pd(PPh ₃) ₂ Cl ₂ (2%) ^{<i>a</i>} , THF, 45-50°, 12 h		324
htto	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), LiCl, PhMe, 50°, 3.5 h	$\begin{array}{c} \text{CHO} \\ \end{array} \qquad \qquad \textbf{I} (27) + \begin{array}{c} \end{array} \qquad \qquad \textbf{(4)} \end{array}$	331
	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), LiCl, PhMe, 50°, 3.5 h	I (1)	331
	OEt Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (2%), LiCl, THF, 55°, 16 h	OEt (63)	270
	Me ₃ Sn TMS	CO (15 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°, 36 h	(87) TMS	334
r-Bu	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), LiCl, THF, 50°, 3.5 h	H I (59) + II (2)	331
OTf	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), LiCL THE 50° 3.5 h	I (55) + II (45)	331
r-Bu' ∽	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°, 36 h	I (67) + II (2)	331
	Me ₄ Sn	CO (50 psi), Pd(PPh ₃) ₄ (3%), LiCl, ZnCl ₂ , THF, 75°	r-Bu O (76)	334
	Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°	r-Bu O	334, 421
	$Me_3Sn error E:Z = 1:2$	CO (15 psi), Pd(PPh ₃) ₄ (3%), LiCl, THF, 55°	f-Bu O (70) $E:Z = 1:2$	334
	Me ₃ Sn	CO (50 psi), Pd(PPh ₃) ₄ (3%), LiCl, ZnCl ₂ , THF, 75°	r-Bu (95)	334
	Bu ₃ Sn	CO (30 psi), Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2.5%), THF, 60°, 3 d	<i>t</i> -Bu	287

TABLE XXV. (CARBONYLATIVE C	CROSS-COUPLING OF ALKENY	L ELECTROPHILES (Continued)
--------------	-----------------	--------------------------	-----------------------------

TABLE XXV. CARBONYLATIVE CROSS-COUPLING OF ALKENYL ELECTROPHILES (Continued)

^a An alternative reagent was BnPd(PPh₃)₂I (2%).

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₆	PhBr	Bu ₃ SnH	CO (450 psi), PhPd(PPh ₃) ₂ I (4%), PhMe, 50°, 3.5 h	PhCHO (2) + PhBr (70) + C_6H_6 (28)	331
	PhI	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	PhCHO (93)	325, 331
		Me ₄ Sn	CO (15 psi), PhPd(PPh ₃) ₂ I (0.2%), HMPA, 120°, overnight	Ph (85)	323
		Me ₄ Sn	CO (15 psi), Ni(PPh ₃) ₂ (CO) ₂ (3%), HMPA, 120°, 24 h	O Ph (73)	841
		Bu ₄ Sn	CO (15 psi), PhPd(PPh ₃) ₂ I (0.2%), HMPA, 120°, overnight	Ph Bu-n (73)	841
		Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), THF, 55°, 3 d	Ph-(60)	287
		Me ₃ Sn	CO (15 psi), Pd(PPh ₃) ₄ (2%), dioxane, 95°, 19.5 h	Ph OEt (67)	270
		Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	O Ph OEt (60)	842
		Me ₃ SnPh	CO (15 psi), [(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 48 h	PhCOPh (42) + Ph-Ph (58)	326, 843

TABLE XXVI. CARBONYLATIVE CROSS-COUPLING OF ARYL ELECTROPHILES

TABLE XXVI. CARBONYLATIVE CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ SnPh	CO (15 psi), [(η ³ -C ₃ H ₃)PdCl] ₂ (1%), HMPA, 20°, 12 h	O Ph (98)	326
$X \xrightarrow{N_2^+ BF_4^-}$	Me ₄ Sn	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux, 1 h	X = C1 (76) X = I (79)	845
I	Me ₃ SnPh	CO (15 psi), [(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 10 h	Ph (78)	326
O ₂ N N ₂ ⁺ BF ₄ ⁻	Me ₄ Sn	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux, 1 h	0 0 ₂ N (70)	845
O ₂ N X	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	O ₂ N CHO I + II	331
X Br Cl			I (7) + II (69) I (0) II (84)	
Ī	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	I (20) + II (62)	331
O ₂ N	Me₄Sn	CO (15 psi), [(ŋ³-C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 30 h	0 0 ₂ N (95)	326, 843
	Me ₃ Sn	CO (15 psi), [(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 1 h	$O_{2N} \xrightarrow{(31)} O_{2N} \xrightarrow{(54)} O_{2$	326
	OEt Bu ₃ Sn	 CO (15 psi), Pd(PPh₃)₄ (2%), dioxane, 95°, 25.5 h O₃ 	O_{O_2N} O_{O_2Et} (23)	270
	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	O_2N (25) $OEt + OE$ (40) OE	842 t
	Me ₃ Sn	CO (15 psi), [(η³-C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 0.7 h	O ₂ N (36) +	326
	Me ₃ SnR <u>R</u>	CO (15 psi), [(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°	$O_2N \longrightarrow R$ (64)	326, 843
	Ph p-ClC ₆ H ₄ p-O ₂ NC ₆ H ₄ C ₆ F ₅ p-MeC ₆ H ₄ p-MeC ₆ H ₄	4.5 h 3 h 4 h 72 h 5 h 3 h	(99) (98) (94) (45) (98) (95)	

TABLE XXVI.	CARBONYLATIVE CROSS-COUPLING OF	F ARYL ELECTROPHILES (Continued)

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ SnC≡CPh	CO (15 psi), [(η ³ -C ₃ H ₅)PdCl] ₂ (1%), HMPA, 20°, 0.5 h	O O ₂ N C ^S CPh (64) +	326
			$O_2N \longrightarrow C \equiv CPh$ (36)	
	Me ₃ SnNEt ₂	CO (15 psi), PhPd(PPh_3)2I (2%), 0.5 h	O_2N (82)	329, 330
	Et ₃ SnOMe	CO (15 psi), PhPd(PPh ₃) ₂ I (2%), 1 h	O_2N O_2N O	329, 330
	Et ₃ SnSPh	CO (15 psi), PhPd(PPh ₃) ₂ I (2%), 1 h	$O_{2N} \xrightarrow{(6)} O_{2N} \xrightarrow{(90)} SPh$	329, 330
O_2N $N_2^+ PF_6^-$	Me ₄ Sn	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux, 1 h	0 ₂ N (85)	845
O ₂ N OTf	Bu₃SnC≡CPr- <i>n</i>	CO (15 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 100°, 6 h	$C_{\text{SCPr-}n}$ (0)	336
	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	CHO (28)	325, 331
N2 ⁺ BF ₄ ⁻	Me ₄ Sn	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux, 1 h	(63)	845
N ₂ ⁺ BF ₄ ⁻	Me ₄ Sn	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux, 1 h	(70)	845
	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	(22)	331
	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	I (99)	325, 331
	Me ₄ Sn	CO (15 psi), Ni(PPh ₃) ₂ (CO) ₂ (3%), HMPA, 150°, 12 h	(62)	841
	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	OEt (69)	842
N2* BF4-	R₄Sn <u>R</u>	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, reflux	R	845
	Me Et Ph	1 h 7 h 7 h	(86) (74) (63)	
	Me ₃ SnPh	CO (130 psi), Pd(OAc) ₂ (2%), CH ₃ CN, Et ₂ O, rt	O Ph (98)	340
F ₃ C	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	F_{3C} (41) + (5)	331

C. h				
Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ SnPh	CO (15 psi), [(ŋ ³ -C ₃ H ₃)PdCl] ₂ (1%), HMPA, 20°, 8 h	MeO ₂ C Ph (98)	326
СССОМОМ	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	O OEt (50) OMOM	842
OTf	Bu ₃ Sn	CO (50 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 70°, 15 h	0 (16) 0 (44) (44)	336
	Bu ₃ Sn TMS	CO (50 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 50°, 15 h		336
I NHCO ₂ Et	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	TMS O OEt (56) NHCO ₂ Et	842
EtO ₂ C	Me ₄ Sn	CO (15 psi), Ni(PPh ₃) ₂ (CO) ₂ (3%), HMPA, 140°, 24 h	EtO ₂ C (87)	841
	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	EtO_2C OEt (59) + OEt (26)	842
OTf	Bu ₃ Sn CO ₂ Et	CO (15 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 90°, 18 h	O O OAc O OAc O	336
Cio	Bu ₃ SnPh	CO (15 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 100°, 15 h	O Ph OAc (78)	336
TITO	Me ₄ Sn	CO (50 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 90°, 1.5 h	(83)	336
	Bu ₃ Sn	CO (15 psig), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 90°, 2 h	(84)	336
	Bu ₃ Sn TMS	CO (30 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 70°, 4 h		336
	Bu ₃ Sn OTHP	CO (30 psi), Pd(dppf)Cl ₂ (4%), LiCl, BHT, DMF, 70°, 3 h	THPO (54)	336

TABLE XXVI. CARBONYLATIVE CROSS-COUPLING OF ARYL ELECTROPHILES (Continued)

	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄		Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5h	CHO (60)	331
	⟨ _s ↓ ₁	Me ₄ Sn	CO (15 psi), Ni(PPh ₃) ₂ (CO) ₂ (3%), HMPA, 140°, 8.5 h	(48) S	841
		Bu ₃ Sn O	CO (32 psi), BnPd(PPh ₃) ₂ Cl (1%), C ₆ H ₆ , 80°, 18 h		844
C ₅	€ N X	Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	OEt X = Br (low) X = I (9)	842
		Bu ₃ Sn OEt	CO (75 psi), Pd(PPh ₃) ₂ Cl ₂ (3%), CHCl ₃ , 80°	OEt (44)	842
C,	0 Br	Me ₄ Sn	CO (45 psi), Pd(OAc) ₂ (2%), PPh ₃ (8%), THF, 65°, 24 h	0 (64)	327
		Bu ₃ Sn	CO (45 psi), Pd(OAc) ₂ (2%), PPh ₃ (8%), THF, 40-45°, 6 h	0 (64)	327
		Bu₄Sn	CO (45 psi), Pd(OAc) ₂ (2%), PPh ₃ (8%), THF, 85°, 6 h	0 0 0 Bu-n (74)	327

TABLE XXVII. CARBONYLATIVE CROSS-COUPLING OF HETEROCYCLIC ELECTROPHILES

TABLE XXVII. CARBONYLATIVE CROSS-COUPLING OF HETEROCYCLIC ELECTROPHILES (Continued)

_	Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
23	CI	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), PPh ₃ (0.75%), CHCl ₃ , 25°, 48 h		333
			CO (15 psi) CO (45 psi) CO (90 psi)	(7) (62) (70)	
		Bu ₃ Sn	CO (90 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), CHCl ₃ , 25°, 48 h	(28)	333
		Me ₃ Sn		(47)	333
	OMs	Me ₃ Sn		O (0)	333
1	√CI	Me ₃ Sn	n	(28)	333
	CI	Me ₃ Sn	CO (45 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), CHCl ₃ , 25°, 48 h	(27)	333
	CI CI	Me ₃ Sn	n	O (20)	333
	NC Br	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	NC (100)	331
		Me ₃ Sn	CO (90 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), CHCl ₃ , 25°, 48 h	NC (16) + (20)	333
5	Br	Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₄ (3%), THF, 55°, 1.5 d		287
		Bu ₃ Sn OTBDMS	CO (30 psi), Pd(PPh ₃) ₄ (5%), THF, 55-60°, 3 d		287
	CI	Me ₃ Sn	Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), PPh ₃ (0.75%), CHCl ₃ , 25°, 48 h		333
			CO (45 psi) CO (90 psi)	I (33) I (48) + II (33)	
		TBDMSO		TBDMSO	
		TBDMSO	CO (500 psi), PPh ₃ (20%), Pd ₂ (dba) ₃ •CHCl ₃ (10%), 3 Å molecular sieves,	TBDMSO- O (76)	522
		Bu ₃ Sn	C ₆ H ₆ , 60°	X~	
	Br	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%). THF, 50°, 3.5 h	O CHO (65)	331
	MeO ₂ CCl	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	MeO ₂ C (100)	331
		Me ₃ Sn	CO (45 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), CHCl ₂ , 25°, 48 h	MeO ₂ C (59)	333

TABLE XXVIII. CARBONYLATIVE CROSS-COUPLING OF ALLYL AND BENZYL ELECTROPHILES

Substrate	Stannane	Conditions	Product(s) and Yield(s) (%)	Refs.
Br	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	CHO I (14)	331
CI	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), PhMe, 50°, 3.5 h	I (65) + II (23)	325, 331
	Me ₃ Sn	CO (90 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%), CHCl ₃ , 25°, 48 h	0 (21) + 0 (13) +	333
DCI	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	$D \xrightarrow{CHO} I + \xrightarrow{D} CHO I +$	325, 331
D			I + II = (49); I:II = 1:1; III + IV = (51); III:IV = 1:	1
Cl	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	I + II = (41); I:II = 1:1; III + IV = (59); III:IV = 1:	1 325, 331
EtO ₂ C Br	Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₄ (3%), THF, 60°, 1 d	$EtO_2C \xrightarrow{(22)} O \xrightarrow{(22)} EtO_2C \xrightarrow{(28)} O$	287
Ph Br	Bu ₃ SnH	Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	Ph CHO I + PhMe II	325, 331 331
		CO (15 psi) CO (45 psi)	I (75) + II (12) I (94) + II (6)	
	Me ₄ Sn	CO (15 psi), Ni(PPh ₃) ₂ (CO) ₂ (3%), HMPA, 150°, 0.5 h	Ph (29)	841
	Me ₄ Sn	CO (15 psi), Pd(Ph-BIAN) (dimethyl fumarate) (1%), HMPA, 50°, 20 h	Ph Me (88)	415
	Bu ₃ Sn	CO (30 psi), Pd(PPh ₃) ₄ (3%), THF, 50°, 2 d	Ph (82)	287
	Bu ₃ Sn	CO (15 psi), Pd(Ph-BIAN) (dimethyl fumarate) (1%), DMF, 50°, 15 h	Ph (79)	415
Ph ^{Cl}	Bu ₃ SnH	CO (15 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	Ph CHO (66) + PhMe (21)	331
	Me ₄ Sn	CO (15 psi), PhPd(PPh ₃) ₂)I (0.2%), HMPA, 120°, overnight	$Ph \underbrace{\bigvee}_{Me}^{O} (86)$	323
OMe EtO ₂ C	Bu ₃ SnH	CO (45 psi), Pd(PPh ₃) ₄ (4%), THF, 50°, 3.5 h	OMe OMe EtO_2C CHO I + EtO_2C II X = Br, I (27) + II (45)	325, 33
	Me ₃ Sn	CO (90 psi), PPh ₃ (0.75%), Pd(CH ₃ CN) ₂ Cl ₂ (1.5%),	$X = CI, I (85) + II (14)$ $OMe O OMe$ $EtO_2C + EtO_2C + (20)$	333

TABLE XXIX. CARBONYLATIVE CROSS-COUPLING OF MISCELLANEOUS ELECTROPHILES

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁	O O O O O O O O O O	CO (15 psi), Pd(dba) ₂ (5%), LiCl, K ₂ CO ₃ , THF or DMF, 60°	O = O = I (38-45)	186
	0	CO (15 psi), polymer-supported Pd(0)(dppf) (5%), LiCl, K_2CO_3 , dioxane, reflux, 3-4 h	I (0)	186
C ₁₂	O OTf	CO (15 psi), Pd(dba) ₂ (5%), LiCi, K ₂ CO ₃ , THF or DMF, 60°	O = O = I (33-46)	186
	0	CO (15 psi), Pd(dppf)Cl ₂ (5%), LiCl, K ₂ CO ₃ , THF, 65°	I (47)	186
		CO (15 psi), polymer-supported Pd(0)(dppf) (5%), LiCl, K ₂ CO ₃ , dioxane, reflux, 3-4 h	I (28)	186
C ₁₃	SnBu ₃ O OTf	CO (15 psi), Pd(dba) ₂ (5%), LiCl, K ₂ CO ₃ , THF or DMF, 60°	$O_{0} = O_{0} I (35-45)$	186
	Ū	CO (15 psi), Pd(dppf)Cl ₂ (5%), LiCl, K ₂ CO ₃ , THF, 65°	I (60)	186
C		CO (15 psi), polymer-supported Pd(0)(dppf) (5%), LiCl, K ₂ CO ₃ , dioxane, reflux, 3-4 h	I (78)	186
U14	SnBu ₃	CO (15 psi), Pd(dba) ₂ (5%), LiCl, K ₂ CO ₃ , THF or DMF, 60°		186
	0	CO (15 psi), Pd(PPh ₃) ₄ (5%), LiCl, K ₂ CO ₃ , dioxane, 90°	I (59)	186
		CO (15 psi), Pd(dppf)Cl ₂ (5%), LiCl, K ₂ CO ₃ , THF, 65°	1 (55)	186

TABLE XXX. INTRAMOLECULAR CARBONYLATIVE CROSS-COUPLING REACTIONS

TABLE XXX. INTRAMOLECULAR CARBONYLATIVE CROSS-COUPLING REACTIONS (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		CO (15 psi), polymer-supported Pd(0)(dppf) (5%), LiCl, K ₂ CO ₃ , dioxanc, reflux, 3-4 h	I (76)	186
586	Cls SnBu ₃ OTf	CO (15 psi), Pd(dba) ₂ (5%), LiCl, K ₂ CO ₃ , THF or DMF, 60°		186
		CO (15 psi), Pd(PPh ₃) ₄ (5%), LiCl, K ₂ CO ₃ , dioxane, 90°	I (60)	186
	C ₁₉ O TfO SnBu ₃	CO (15 psi), polymer-supported Pd(0)(dppf) (5%), LiCl, K ₂ CO ₃ , dioxane, reflux, 3-4 h	I (70)	186
		CO (50 psi), Pd(CH ₃ CN) ₂ Cl ₂ (10%), LiCl, DMF, rt, 13 h		335
	TFO SnBu ₃	CO (50 psi), Pd(CH ₃ CN) ₂ Cl ₂ (10%), LiCl, DMF, rt, 13 h		335

TABLE XXXI. CROSS-COUPLING REACTIONS THAT FORM POLYMERS

TABLE XXXI. CROSS-COUPLING REACTIONS THAT FORM POLYMERS (Continued)

TABLE XXXI. CROSS-COUPLING REACTIONS THAT FORM POLYMERS (Continued)

Br

TABLE XXXI. CROSS-COUPLING REACTIONS THAT FORM POLYMERS (Continued)

	Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂	Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(64)	342
	ci	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 80°, 20 h		342
C3	Br	Bu ₃ Sn + HC≡CCO ₂ Me	Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (2%), NMP, 80°, 24 h	$= \underbrace{ \begin{array}{c} CO_2 Me \\ \\ \\ \\ \\ \\ \end{array}} $ (16)	356
		Bu₃Sn + HC≡CTMS	Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (2%), PhMe, 80°, 24 h	TMS (16)	356
		Bu₃Sn + HC≡CBu-n	Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (2%), HMPA, 80°, 24 h	$\overset{n-\mathrm{Bu}}{=\!$	356
		Bu₃SnPh + HC≡CCO₂Me	Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (2%), HMPA, 80°, 24 h	Ph CO_2Me (36)	356
		Bu ₃ SnPh + HC \equiv CR \underline{R} CH ₂ OEt TMS Bu- <i>n</i> Ph	Pd(CH ₃ CN) ₂ Cl ₂ (5%), Et ₄ NCl, HMPA, 80°, 24 h	R Ph (21) (23) (24) (26)	356
		Bu ₃ SnC≡CPh + HC≡CCO ₂ Me	Pd(CH ₃ CN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (2%), PhMe, 80°, 24 h	CO_2Me PhC (16)	356
		Bu ₃ SnC≡CPh + HC≡CTMS	Pd(CH ₃ CN) ₂ Cl ₂ (5%), HMPA, 80°, 24 h	PhC (10)	356
//	CI	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 120°, 20 h	(0)	342
		Bu₃SnC≡CTMS + HC≡CBu- <i>n</i>	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	$\begin{array}{c} n-Bu \\ C \\ TMSC' \end{array} $ (72)	357
		Bu₃SnC≡CTMS +	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	(83)	357
		HC \equiv C Bu ₃ SnC \equiv CTMS + HC \equiv C(CH ₂) ₆ OTBDMS	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	TMSC ^{''} TBDMSO(CH ₂) ₆ ,C TMSC ^{''} (76)	357
		$Bu_3SnC \equiv CPh + HC \equiv CBu-n$	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	n-Bu (70)	357
		Bu₃SnC≡CPh + HC≡CTMS	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	TMS C PhC (36)	357

TABLE XXXII. MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS

	Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ SnC≡CPh + HC≡CPh	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	Ph (8 0) PhC (8 0)	357
		$Bu_3SnC\equiv CPh + OH$ $HC\equiv C$	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	HO HO PbC'' (79)	357
	Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), CH ₂ Cl ₂ , 80°, 20 h	(63)	859
	TMSI	Bu₃Sn + HC≡CPh	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 7 h	$\xrightarrow{\text{Ph}}_{\text{TMS}}$ (80)	364
		Bu ₃ SnC≡CMe + HC≡CBu-n	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 3 h	n-Bu C TMS MeC	364
		Bu ₃ SnC≡CMe + HC≡CPh	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 2.5 h	$\begin{array}{c} Ph \\ & & \\ & & \\ & & \\ & & \\ & & \\ MeC \end{array} $	364
		$Bu_3SnC \equiv CMe + HC \equiv CC_6H_4Cl-p$	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 2.5 h	$\xrightarrow{p-\text{ClC}_{6}\text{H}_{4}}_{, \downarrow_{\mu}^{C}} \xrightarrow{(70)}_{, \downarrow_{\mu}^{C}} \text{TMS}$	364
		$Bu_3SnC \equiv CMe + HC \equiv C(CH_2)_2C_6H_4Br-o$	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 2 h	$\begin{array}{c} o\text{-BrC}_{6}H_{4}(CH_{2})_{2} \\ \swarrow \\ \swarrow \\ C \\ MeC \end{array} $ (70)	364
		Bu ₃ SnC≡CMe + HC≡C(CH ₃),0TBDMS	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 3 h	$\begin{array}{c} \text{TBDMSO(CH}_2)_4 \\ \searrow \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & & \swarrow \end{array} \tag{76}$	364
		Bu ₃ Sn + HC≡C(CH ₂) ₄ OTBDMS	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 7 h	MeC TBDMSO(CH ₂) ₄ TMS (73)	364
		Bu ₃ SnC≡CTMS + HC≡CPh	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 3 h	Ph ,C TMS (79) TMSC	364
		Bu₃SnC≡CPh + HC≡CPh	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 2 h	$\overset{Ph}{\underset{\mathcal{C}}{\overset{\mathcal{C}}{\longrightarrow}}} TMS $ (71)	364
C4	CI	Bu₃SnC≡CPh + HC≡CBu-n	Ni(acac) ₂ (10%), DIBAL (10%), THF, reflux, 1 h	$n-Bu \rightarrow (67)$	357
	OHC Br	OSnBu ₃	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 15 h		209
		(CH ₂ =CHCH ₂) ₄ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 48 h	(85)	209
	o ↓↓x	OSnBu ₃	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 5 h	$ \begin{array}{c} 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	209
	CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), CH ₂ Cl ₂ , 80°, 20 h	(53)	859

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
	OHC Bu ₃ Sn S	1. Pd(PPh ₃) ₄ (3%), Ag ₂ O, DMF, 100°, 15 min 2. HCl (2 N), 100°, 1 h	(71)	860
Br N NH ₂	OHC Bu ₃ Sn	1. Pd(PPh ₃) ₄ (3%), CuO, DMF, 100° 2. HCl (2 N)	(5)	861
O CI	(CH ₂ =CHCH ₂) ₄ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 48 h	(90)	209
CI	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), CH ₂ Cl ₂ , 80°, 20 h		859
Me ₃ SiSiMe ₂ I	Bu ₃ SnC≡CMe + HC≡CPh	Pd(PPh ₃) ₄ (2%), dioxane, 60°, 2 h	$\begin{array}{c} Ph \\ C \\ SiMe_2SiMe_3 \end{array} $	364
²⁶ PhBr	Bu ₃ SnH + <i>t</i> -BuNC	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	$H \to H \to$	862
	Bu ₃ Sn + t-BuNC	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	<i>t</i> -BuN=(tr)	862
	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°	Ph (87)	342
	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	Ph (87)	341, 342
	Bu ₃ Sn OMe +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	Ph (0) OMe	342
	Bu ₃ Sn + t-BuNC	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	<i>t</i> -BuN=(r)	862
	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 80°, 48 h	Ph (49)	341, 342
	OSnBu ₃ +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	Ph (0)	342
	Bu ₃ Sn + t-BuNC EtO	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	t-BuN=(30)	862
	Bu ₃ Sn EtO +	1. Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h 2. H ⁺	Ph O (73)	342
	Bu ₃ SnPh + <i>t</i> -BuNC	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	$r-BuN \stackrel{Ph}{=} (0)$	862
	Bu ₃ SnPh +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	Ph (60)	341, 342
	$Bu_3SnC\equiv CPh + t-BuNC$	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	$r-BuN = \begin{pmatrix} CPh \\ C' \\ Ph \end{pmatrix} $ (40)	862

TABLE XXXII.	MULTI-STEP	P TRANSFORMATION	VS INVOLVING DIREC	T CROSS-COUPLING REACTIONS	(Continued)
--------------	------------	------------------	---------------------------	----------------------------	-------------

	Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ SnC≡CPh +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 12 h	Ph (28) $C \equiv CPh$	341, 342
		SnMe ₃	Pd(PPh ₃) ₄ , <i>i</i> -Pr ₂ NEt, BHT, PhMe, reflux	Ph I + H II I + II (58) III = 9:91	373
		Bu ₃ SnC≡CPh +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°	Ph C (46) CPh	342
		Bu ₃ SnR + <i>t</i> -BuNC <u>R</u> NEt ₂ OMe OEt SPh CN	Pd(PPh ₃) ₄ (10%), C ₆ H ₆ , 120°	$ \begin{array}{c} R \\ Ph \\ (22) \\ (63) \\ (48) \\ (10) \\ (40) \end{array} $	862
	PhI	Bu ₃ Sn + MeO ₂ C MeO ₂ C	Pd(PPh ₃) ₄ (1%), C ₆ H ₆	$MeO_2C \xrightarrow{Ph} (49)$ MeO_2C	342
		Bu ₃ SnC≡CPh +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	$ \begin{array}{c} Ph\\ C \equiv CPh \end{array} $ (56)	341, 342
	HC C Br	Bu ₃ SnC≡C− OTBDMS	Pd(PPh ₃) ₄ (10%), THF, 40-45°	HO Br (352
	HC ^{OH I}	$Bu_3SnC \equiv CCH(OEt)_2$	Pd(PPh ₃) ₄ (10%), THF, 40-45°	HO I ()	352
		Bu ₃ SnC≡C−∕ OTBDMS	Pd(PPh ₃) ₄ (10%), THF, 40-45°	HO I C≡C OTBDMS (70-80)	352
		Bu ₃ SnC≡C− OTBDMS	$Pd(PPh_3)_4$ (10%)	$HO \xrightarrow{C \equiv C} OTBDMS (32)$	352
6	Br	OSnBu ₃	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 4 h	0 0 (70)	209
C ₇	Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	(87)	342
		Bu ₃ SnPh +	Pd ₂ (dba) ₃ (0.5%), P(<i>o</i> -Tol) ₂ Ph (2%), Et ₄ NCl, THF, 100°, 24 h	(85)	343
		Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	(95)	341
	Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	NC (56) + (15) CN	342

 TABLE XXXII.
 MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

	Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
	NHAc N Br	OHC Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), DMF, 100°, 8 h	(69)	860
	Br	OHC Bu ₃ Sn	1. Pd(PPh ₃) ₄ (5%), CuO, DMF, 100° 2. HCl (2 N)	(61)	861
	NHAc Br	OHC Bu ₃ Sn	Pd(PPh ₃) ₄ (3%), DMF, 100°, 8 h	N (60)	860
	NHAc N+ Br	OHC R ₃ Sn S	Pd(PPh ₃₎₄ (5%), CuO, DMF, 100°	N N R = Me (54) R = Me, no CuO (46) O S R = Bu (33)	694
	Ph Cl	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 80°, 12 h	O Ph (36)	341, 342
	Br	Bu ₃ Sn N(TMS) ₂	Pd(PPh ₃) ₄ , PhMe, reflux, 24 h	(89)	462
	ССНО	Bu ₃ Sn H ₂ N O	BnPh(PPh_3)_2Cl (6.5%), CuI, C_6H_6 , rt, 20 h		644
		Bu ₃ Sn BocHN O	BnPh(PPh ₃) ₂ Cl (2.5%), CuI, THF, reflux, 20 h		644
	MeO	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	OMe (99)	342
	∨C ^{₅C} O _{Br}	Bu ₃ Sn	Pd(PPh ₃) ₄ (4%)	(62)	207
C ₈	Ph Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	Ph (91)	341, 342
		Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	Ph (36)	341
		Bu ₃ SnPh +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 20 h	Ph (71)	341
		$Bu_3SnC\equiv CPh + $	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 12 h	$C \equiv CPh$ (64)	341
	n-C ₆ H ₁₃ Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	$C_6H_{13}-n$ (83)	342

TABLE XXXII. MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

Substrate	Stannane and Other	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO ₂ C	Bu ₃ Sn C ₅ H ₁₁ -n + IgCl OSiEt ₃	 PdCl₂, LiCl, norbornene, CH₃CN stannane, PPh₃, THF 	$C_{3}H_{11}-n$ (34) S $CO_{2}Me$	863
Br NHAc	SnMe ₃ CHO	Pd(dppb)Cl ₂ , CuO, DMF, 105-110°, 48 h	(78)	864
	Me ₃ Sn O	Pd(dppb)Cl ₂ , CuO, DMF, 105-110°, 48 h		864
	SnMe ₃ CHO NOMe	Pd(dppb)Cl ₂ , CuO, DMF, 105-110°, 48 h	OMe (68)	864
Br	Bu ₃ Sn N(TMS) ₂	Pd(PPh ₃) ₄ , PhMe, reflux, 48 h	(86)	464, 540
Br	Bu ₃ Sn +	Pd(PPh ₃) ₄ (1%), C ₆ H ₆ , 100°, 10 h	(96)	341, 34
O Ph Br	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 5 h	Ph O (75)	209
		BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 5 h	$O \xrightarrow{Ph} O (80)$	209
	Bu ₃ SnBn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 20 h	$Ph \begin{pmatrix} O \\ H \\ (87) \end{pmatrix} + Bu_2(Bn)SnBr + (80) \end{pmatrix}$	209
Ph Cl	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), CH ₂ Cl ₂ , 80°, 20 h	CHO (65)	859
ci Ci	Bu ₃ Sn	Pd(PPh ₃) ₄ (1%), CH ₂ Cl ₂ , 80°, 20 h	CHO (39)	859
Et O	Bu ₃ Sn N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 8 h 	Et N (34)	362
	Bu ₃ Sn O O	Pd2(dba)3 (1%), P(2-furyl)3 (2%), THF, 40-70°, 3 h	$ \begin{array}{c} Et & O \\ O \\ Et & O \\ OH \end{array} $ (61)	361
	Bu ₃ Sn X TMS	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-100°, 8 h	OH Et TMS $X = O (\geq 71)$ Et $X = S (\geq 58)$	295
	Bu ₃ Sn - S	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 6 h 	$Et \qquad S \qquad (34)$	362

,	TABLE XXXII MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-100°, 16 h	E_{t} E_{t} $X = O (\geq 94)$ $X = S (\geq 85)$	295
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-100°, 16 h	$Et \qquad S \qquad (292) \\ Et \qquad OH \qquad (292)$	295
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	Et Et OH OH OH	360
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-100°, 16 h	Et $K = O (\geq 76)$ $X = S (\geq 78)$ OH	295
i-PrO Cl	Bu ₃ Sn	Pd(dba) ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 60°, 5 h	i-PrO OH (67)	359
	OEt Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 100°, 6 h	i-PrO OH (55)	359
	Bu ₃ Sn N	 Pd₂(dba)₃ (5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 6 h 	i-Pro (62)	362
	Bu ₃ SnPh	Pd(PhCN) ₂ Cl ₂ (5%), P(2-fury!) ₃ (10%) dioxane, 100°, 6 h	i-PrO OH	359
	Bu ₃ Sn O O	Pd(dba) ₂ (1%), P(2-furyl) ₃ (2%), PhMe, 55-60°, 3 h	i-Pro O OH OH	361
	Bu ₃ Sn O TMS	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-70°, 8 h	i-Pro OH (≥78)	295
	Bu ₃ Sn N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 6 h 	i-PrO S (44)	362
	$ \begin{array}{c} O\\ Bu_3Sn\\ R^{\dagger}\\ O\\ C\\ R^2 \end{array} $	Pd(dba) ₂ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	$i-PrO \xrightarrow{O} \frac{R^1 R^2}{TMS Me} (81)$ OH O R ² H OPr-i (77)	360
	Bu ₃ Sn X	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%) dioxane, 50-100°, 16 h	$\begin{array}{c} i - PrO \\ \hline \\ \hline \\ \\ OH \end{array} \begin{array}{c} X \\ X = O (\geq 84) \\ X = S (\geq 82) \end{array}$	295

TABLE XXXII. MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

	Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
		Bu ₃ Sn	Pd(dba) ₂ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	<i>i</i> -PrO OH OH OH OH O	360
C9	R Br NHAc	SnMe ₃ CHO	Pd(dppb)Cl ₂ , CuO, DMF, 105-110°, 48 h	$R \longrightarrow N$ $R = Me (87)$ $R = OMe (91)$	864
Į	NHBoc S Br	OHC Bu ₃ Sn	Pd(PPh3)4, DMF, 100°, 24 h	(59)	101
		Me ₃ Sn S	I. Pd(PPh ₃) ₄ (3%), DMF, 100°, 24 h 2. HCl (2 N)	(43)	102
			 Pd(dppb)Cl₂ (5%), CuO, DMF, 100°, 3 h HCl (2 N) NaOH (2 N) 	(57)	96
B	BocHN Br	OHC Bu ₃ Sn	Pd(PPh ₃) ₄ , DMF, 100°, 24 h	S S S (75)	101
		Me ₃ Sn S	1. Pd(PPh ₃) ₄ (3%), DMF, 100°, 24 h 2. HCl (2 N)	(63)	102
Ĺ		OHC Bu ₃ Sn	Pd(PPh ₃) ₄ , DMF, 100°, 24 h	$S \xrightarrow{N} S$ (42)	101
		Me ₃ Sn S	1. Pd(PPh ₃) ₄ (3%), DMF, 100°, 24 h 2. HCl (2 N)		102
Ŧ	Ph Br	OSnBu ₃	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 5 h	0 Ph 0 (55)	209
F	Ph Cl	Bu ₃ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 48 h	(85)	209
(Br CO ₂ Et	Bu ₃ Sn N(TMS) ₂	Pd(PPh ₃) ₄ , PhMe, reflux, 96 h	(90)	462
N N	MeO Br MeO CO ₂ Et	Bu ₃ Sn N(TMS) ₂	Pd(PPh ₃) ₄ , PhMe, reflux, 24 h	$MeO \xrightarrow{O} (18)$ $MeO \xrightarrow{N} H$	462
n	cl c-Bu O	Bu ₃ Sn N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 8 h 	<i>n</i> -Bu (31)	362
		Bu ₃ Sn O O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	n-Bu OH (71)	361

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
<i>n</i> -Bu O	Bu ₃ Sn O O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	n-Bu OH (72)	361
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, DMF, 60°, 8 h	(43) + (5) TMS, (5)	349
	Bu ₃ SnTMS	Pd(PPh3)4 (5%), LiCl, DMF, 60°, 8 h	(54)	349
C _{≥CH}	Bu ₃ Sn	Pd(OAc) ₂ (5%), PPh ₃ (10%), Et ₃ N, LiCl, DMF, 60°, 8 h	(63)	349
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, DMF, 60°, 8 h	(46) + (39) C ^S CH	349
	Bu ₃ SnC≡CTMS	Pd(OAc) ₂ (5%), PPh ₃ (10%), Et ₃ N, LiCl, DMF, 60°, 8 h	(45)	349
₩VHCO2Bn	$\frac{Me_3Sn}{V_4} + \frac{Na}{CO_2Me}$	 Pd(CH₃CN)₂Cl₂ (83%), malonate, THF, -78°, 1.5 h stannane, DMF, THF, -60° to π, 15-18 h 	MeO ₂ C NHCO ₂ Bn (80) MeO ₂ C	339
	$Me_{3}SnC \equiv CMe + Na CO_{2}Me$	 Pd(CH₃CN)₂Cl₂ (83%), malonate, THF, -78°, 1.5 h stannane, DMF, THF, -60° to rt, 15-18 h 	MeO ₂ C MeO ₂ C C	339
	$Me_{3}Sn + OEt + Na CO_{2}Me$	 Pd(CH₃CN)₂ Cl₂ (83%), malonate, THF,78°, 1.5 h stannane, DMF, THF, -60° to π, 15-18 h 	MeO ₂ C MeO ₂ C MeO ₂ C (31)	339
	Me_3Sn Ph + Na CO_2Me CO_2Me	 Pd(CH₃CN)₂Cl₂ (83%), malonate, THF, -78°, 1.5 h stannane, DMF, THF, -60° to rt, 15-18 h 	OEt MeO ₂ C MeO ₂ C MeO ₂ C Ph	339
NHBoc	OHC Bu ₃ Sn	1. Pd(PPh ₃) ₄ (5%), CuO, DMF, 100° 2. HCl (2 N)	S- N N (44)	861
O Ph Cl	(CH ₂ =CHCH ₂) ₄ Sn	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 48 h	Ph (90)	209
OTF C ^E CH	Bu ₃ Sn	Pd(dppf)Cl ₂ (5%), LiCl, DMF, 60°, 8 h	(51)	349
	Bu ₃ Sn	Pd(PPh ₃) ₄ (5%), LiCl, DMF 60° 8 b	(51)	349

TABLE XXXII. MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
			TMSC [°] C	
	Bu₃SnC≡CTMS	Pd(PPh ₃) ₄ (5%), LiCl, DMF, 60°, 8 h	(54)	349
	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), CH ₃ CN, 5-25°, 2-6 h	(40)	347
Ac	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), Et ₄ NCl, CH ₃ CN, 5-25°, 2-6 h	(54)	347
C ^{≥CH} N. _{Me}	Bu3Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), LiCl, CH ₃ CN, 60°, 2 h	$\bigwedge_{O}^{+} \bigwedge_{Me}^{+} \bigwedge_{O}^{+} \bigwedge_{Me}^{(20)} 4:1$	347
C C	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), Et ₄ NCl, CH ₃ CN, 60°, 1.5 h	(50)	347
Ph O	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (4%), P(2-furyl) ₃ (10%), dioxane, 100°, 3 h	O Ph OH (75)	359
	Bu ₃ Sn O O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	Ph OH (75)	361
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	Ph (94)	360
	O Bu ₃ Sn X	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	OH O $X = O (\geq 89)$ $X = S (\geq 51)$	295
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	Ph OH (263)	295
Ph Cl	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 100°, 3 h	Ph (75)	359
	Bu ₃ Sn)=0 EtO	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 100°, 3 h	OH OH OEt (50)	359
	Bu ₃ Sn N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 10 h 	Ph (42)	362

TABLE XXXII.	MULTI-STEP	TRANSFORMATIO	NS INVOLVINC	J DIRECT CRO	OSS-COUPLING RE	ACTIONS	(Continued)
--------------	------------	---------------	--------------	---------------------	-----------------	---------	-------------

Substrate	Stannane and Other	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ Sn O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	Ph (56)	361
	Bu ₃ Sn - N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 8 h 	OH OH O N O (58) Ph	362
	Bu ₃ Sn-X	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	Ph $X = O (\geq 75)$ $X = S (\geq 63)$	295
	Bu ₃ Sn-	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	$\begin{array}{c} OH \\ Ph \\ \downarrow \\ OH \\ OH \end{array} (\geq 60) \\ (\geq 60) \end{array}$	295
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100 1	Ph (74) OH O	360
	Bu ₃ Sn TMS O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	Ph OH O (82)	360
	Bu ₃ Sn TMS OPr- <i>i</i>	Pd2(dba)3 (1%), P(2-furyl)3 (4%), dioxane, 80-100°	$Ph \qquad O \qquad (81) \qquad OPr-i \qquad OPr-$	360
	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	Ph $X = O$ (260) X = S (262) OH	295
Ph Br	OSnBu ₃	BnPd(PPh ₃) ₂ Cl (2.5%), THF, 63°, 48 h	0 Ph 0 (35)	209
i-Pro R O	Bu ₃ Sn O O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	$\begin{array}{c} i - \Pr O \\ R \\ R \\ O \\ R \\ O \\ O \\ H \end{array} \qquad \begin{array}{c} R = n - Bu (99) \\ R = s - Bu (91) \\ R = t - Bu (69) \\ O \\ H \end{array}$	361
<i>i</i> -PrO <i>I</i> -Bu O	Bu ₃ Sn TMS O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	$i - PrO \qquad 0 \qquad (77)$ $r - Bu \qquad OH \qquad O$	360
	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), CH ₃ CN, 5-23°, 2-6 h	(60)	347
	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), Et ₄ NCl, CH ₃ CN, 5-25°, 2-6 h	(55)	347

TABLE XXXII. MULTI-STEP TRANSFORMATIONS	INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)
---	---	------------

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
n-Bu Cl n-Bu O	Bu ₃ Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 100°, 3 h	<i>n</i> -Bu (74)	359
	OEt Bu3Sn	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 100°, 4 h	OH n-Bu n-Bu (54)	359
	Me ₃ SnPh	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 100°, 53 h	ОН n-Bu n-Bu (77)	359
	Bu ₃ Sn O TMS	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-70°, 8 h	$ \begin{array}{c} OH\\ n-Bu\\ n-Bu\\ \end{array} \xrightarrow{O} TMS (\geq 65) \end{array} $	295
	Bu ₃ Sn-X	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furył) ₃ (10%), dioxane, 50-100°, 16 h	OH n-Bu n-Bu $X = O (\geq 65)$ $X = S (\geq 61)$	295
	Bu ₃ Sn-	Pd(PhCN) ₂ Cl ₂ (5%), P(2-furyl) ₃ (10%), dioxane, 50-100°, 16 h	$ \begin{array}{c} \text{OH} \\ \begin{array}{c} \text{N-Bu} \\ \text{N-Bu} \\ \text{OH} \end{array} $ (≥ 58)	295
Aco CO2M	e Bu ₃ Sn	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 0.5 h	MeO ₂ C (72)	345
³ BnO	Bu₃SnC≡C−∕ R	Pd(OAc) ₂ (5%), PPh ₃ (10%), PhMe, 60°, 5 h	Br C^{R} R = OTHP (51) C R = OTBDMS (28)	353
i-Pro Ph O	Bu ₃ Sn N	 Pd₂(dba)₃ (2.5%), P(2-furyl)₃ (10%), PhMe, 60°, overnight, reflux, 3 h 	Ph (10) i-PrO (10)	362
	Bu ₃ Sn O O	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (2%), THF, 40-70°, 3 h	<i>i</i> -PrO Ph O O O O O O O O O O O O O O O O O O	360
	Bu ₃ Sn	Pd ₂ (dba) ₃ (1%), P(2-furyl) ₃ (4%), dioxane, 80-100°	i-PrO ph (76)	360
	Ö Bu ₃ Sn	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 1 h	О́Н Ö Тs, (83)	345
	Bu3Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), CH ₃ CN, 5-25°, 2-6 h	TMS (50)	347
Ac	0		$\frac{Ph}{Ph} = 0 $	

 TABLE XXXII.
 MULTI-STEP TRANSFORMATIONS INVOLVING DIRECT CROSS-COUPLING REACTIONS (Continued)

Substrate	Stannane and Other	Conditions	Product(s) and Yield(s) (%)	Refs
	Components Bu ₃ SnOTHP	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCla THE reflux 4 b	$PhO_2S $ (61)	345
PhO ₂ S SO ₂ P	h Bu3Sn	Pd(PPh ₃) ₄ (15%), THF, 40°, 6 h	PhO ₂ S (69)	345
	Bu ₃ Sn	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 1 h	PhO_2S (76)	345
	Bu ₃ Sn OEt Bu ₃ Sn	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 1 h	PhO ₂ S ()	345
	Bu ₃ Sn <u>R</u>	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 2 h	PhO ₂ S R $R = CO_2Et$ (77) R = TMS (85)	345
	Bu ₃ Sn CO ₂ Et	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 4 h	PhO_2S (67) CO ₂ Et	345
	Bu ₃ Sn <u>R</u>	Pd(dba) ₂ (10%), P(2-furyl) ₃ (30%), ZnCl ₂ , THF, reflux, 2 h	PhO ₂ S $R = OTHP$ (75) R = NHFMOC (6	345 65)
Br	Bu3Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), LiCl, CH ₃ CN, 80°, 24 h	(60)	347
Bn N O I	Bu ₃ Sn	Pd(OAc) ₂ (10%), PPh ₃ (20%), CH ₃ CN, 80°, 1 h	H H (63)	347
	Bu ₃ Sn N	Pd(OAc) ₂ (10%), PPh ₃ (20%), THF, 60°, 1 h	$ \begin{array}{c} $	347
	Bu ₃ Sn N	Pd(OAc) ₂ (10%), PPh ₃ (20%), THF, 60°, 1 h	(38)	347

TABLE XXXII. N	MULTI-STEP TRA	NSFORMATIONS	INVOLVING DIRECT	CROSS-COUPLING	REACTIONS	(Continued)
----------------	----------------	--------------	------------------	----------------	-----------	-------------

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
	Bu ₃ SnR <u>R</u> 2-furyl 2-pyridyl (<i>E</i>)-CH=CHPh	CO, Pd(OAc) ₂ (10%), PPh ₃ (20%), Et ₄ NCl, PhMe, 100°, 15 h	(88) (83) (61)	355
	Bu ₃ Sn-V SEM	CO, Pd(OAc) ₂ (10%), PPh ₃ (20%), Et ₄ NCl, PhMe, 100°, 15 h	O SEM (52)	355
$ \begin{array}{c} Ph \\ Ph \\ N \\ 0 \end{array} $	$Me_{3}Sn \longrightarrow + \\Na \longrightarrow CO_{2}Me \\CO_{2}Me$	1. Pd(PhCN) ₂ Cl ₂ (71%), rt 2. malonate, Et ₃ N, 2.5 h 3. CO (15 psi), -78 to -20° 4. stannane, -20° to rt, 15-18 h	MeO_2C MeO_2C H O	339
	$Me_{3}Sn \longrightarrow + \\Na \longrightarrow CO_{2}Me \\CO_{2}Me$	 Pd(PhCN)₂Cl₂ (71%), rt malonate, Et₃N, 2.5 h CO (15 psi), -78 to -20° stannane, -20° to rt, 15-18 h 	MeO_2C H O O H O O H O O (68)	339
$ \begin{array}{c} Ph \\ & & \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & \\ \\ & \\$	$Me_{3}Sn + CO_{2}Me CO_{2}Me CO_{2}Me$	 Pd(PhCN)₂Cl₂ (71%), rt malonate, Et₃N, 2.5 h CO (15 psi), -78 to -20° stannane, -20° to rt, 15-18 h 	$MeO_2C \xrightarrow{Ph} O (76)$	339
	Me ₃ Sn + Na CO ₂ Me CO ₂ Me	 Pd(PhCN)₂Cl₂ (71%), rt malonate, Et₃N, 2.5 h CO (15 psi), -78 to -20° stannane, -20° to rt, 15-18 h 	MeO_2C MeO_2C H V O (83)	339
	$Me_{3}SnC \equiv CPh + \\Na \longrightarrow CO_{2}Me \\CO_{2}Me$	1. Pd(PhCN) ₂ Cl ₂ (71%), rt 2. malonate, Et ₃ N, 2.5 h 3. CO (15 psi), -78 to -20° 4. stannane, -20° to rt, 15-18 h	MeO_2C MeO_2C H $PhC \ge C$ O	339
	$Me_{3}SnC \equiv CPh + Na \longrightarrow CO_{2}Me CO_{2}Me$	1. Pd(PhCN) ₂ Cl ₂ (71%), rt 2. malonate, Et ₃ N, 2.5 h 3. CO (15 psi), -78 to -20° 4. stannane, -20° to rt, 15-18 h	$MeO_2C \xrightarrow{Ph} O (76)$ $MeO_2C \xrightarrow{H^-} O (76)$ $PhC \ge C \xrightarrow{O} O$	339
C ₁₁ Ph	Bu ₃ SnPh	CO (45 psi), BnPd(PPh ₃) ₂ Cl (5%), dioxane, 50-100°, 16 h	Ph Ph (78)	363
	Bu ₃ Sn OMe	CO (45 psi), BnPd(PPh ₃) ₂ Cl (5%), dioxane, 50-100°, 16 h	Ph OMe (76)	363

TABLE XXXIII. MULTI-STEP TRANSFORMATIONS INVOLVING CARBONYLATIVE CROSS-COUPLING (Continued)

TABLE XXXIII. MULTI-STEP TRANSFORMATIONS INVOLVING CARBONYLATIVE CROSS-COUPLING (Continued)

Substrate	Stannane and Other Components	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Me_{3}Sn + Na - CO_{2}Et CO_{2}Bu-t$	 Pd(PhCN)₂Cl₂ (71%), rt malonate, Et₃N, -78°, 5 h CO (15 psi), -78 to -20° stannane, -20° to rt, 15-18 h 	r-BuO ₂ C EtO ₂ C H O H O H O C H C (68-77) I:1 diastereomers	339
	Me ₃ SnR + Na CO ₂ Me CO ₂ Me $\frac{R}{2-furyl}$ 2-thienyl Ph C ₆ H ₄ Cl-p C ₆ H ₄ Me-p	1. Pd(PhCN) ₂ Cl ₂ (71%), rt 2. malonate, Et ₃ N,78°, 5 h 3. CO (15 psi),78 to -20° 4. stannane, -20° to rt, 15-18 h	$MeO_{2}C + Ph + Ph + O + O + O + O + O + O + O + O + O + $	339
	$Me_{3}SnC \equiv CPh + Na \xrightarrow{CO_{2}Me} CO_{2}Me$	1. Pd(PhCN) ₂ Cl ₂ (71%), rt 2. malonate, Et ₃ N, -78°, 5 h 3. CO (15 psi), -78 to -20° 4. stannane, -20° to rt, 15-18 h	$MeO_2C \xrightarrow{Ph} Ph \qquad (90)$ $MeO_2C \xrightarrow{H} O \qquad (90)$ $PhC \ge C \xrightarrow{O} O$	339

TABLE XXXIII. MULTI-STEP TRANSFORMATIONS INVOLVING CARBONYLATIVE CROSS-COUPLING (Continued)

12. Acknowledgments

We thank Dr. Gregory P. Roth for help with parts of the manuscript.

References

- 1. Kosugi, M.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 1423.
- Kosugi, M.; Shimizu, Y.; Migita, T. J. Organomet. Chem. 1977, **129**, C36.
- 3. Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 301.
- 4. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
- 5. Beletskaya, I. P. J. Organomet. Chem. 1983, 250, 551.
- 6. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
- 7. Kumada, M. Pure Appl. Chem. 1980, 52, 669.
- 8. Erdik, E. Tetrahedron 1992, 48, 9577.
- Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, **111**, 314.
- 10. Hatanaka, Y.; Hiyama, T. Synlett 1991, 845.
- 11. Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, **113**, 9585.
- 12. Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359.
- 13. Mitchell, T. N. Synthesis 1992, 803.
- 14. Farina, V.; Roth, G. P. in *Advances in Metal-Organic Chemistry*, Liebeskind, L. S. Ed., **Vol.5**, JAI Press, Greenwich, CT, 1995.
- Stille, J. K. in *The Chemistry of the Metal-Carbon Bond*, Hartley, F. R., Patai S., Eds., Vol.2, John Wiley, New York, 1985; p. 625.
- 16. Amatore, C.; Azzabi, M.; Jutand, A. J. Organomet. Chem. 1989, **363**, C41.
- Fauvarque, J. F.; Pflüger, F.; Troupel, M. J. Organomet. Chem. 1981, 208, 419.
- Ugo, R.; Pasini, A.; Fusi, A.; Cenini, S. J. Am. Chem. Soc. 1972, 94, 7364.
- 19. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
- 20. Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 1670.
- 21. Lau, K. S. Y.; Wong, P. K.; Stille, J. K. J. Am. Chem. Soc. 1976, **98**, 5832.
- 22. Becker, Y.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 838.
- 23. Kramer, A. V.; Osborn, J. A. J. Am. Chem. Soc. 1974, 96, 7832.
- 24. Sheffy, F. K.; Godschalx, J. P.; Stille, J. K. J. Am. Chem. Soc. 1984, **106**, 4833.
- Kurosawa, H.; Ogoshi, S.; Kawasaki, Y.; Murai, S.; Miyoshi, M.; Ikeda, I. J. Am. Chem. Soc. 1990, **112**, 2813.
- Kurosawa, H.; Kajimaru, H.; Ogoshi, S.; Yoneda, H.; Miki, K.; Kasai, N.; Murai, S.; Ikeda, I. J. Am. Chem. Soc. 1992, **114**, 8417.

- 27. Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
- 28. Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033.
- 29. Chen, Q.-Y.; He, Y.-B. Chin. J. Chem. 1990, 451.
- 30. Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. J. Org. Chem. 1993, **58**, 5434.
- Piers, E.; Friesen, R. W.; Keay, B. A. J. Chem. Soc., Chem. Commun. 1985, 809.
- 32. Gronowitz, S.; Messmer, A.; Timari, G. J. Heterocycl. Chem. 1992, **29**, 1049.
- Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, **59**, 5905.
- 34. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4981.
- 35. Godschalx, J.; Stille, J. K. Tetrahedron Lett. 1980, 21, 2599.
- 36. Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2595.
- 37. Keinan, E.; Roth, Z. J. Org. Chem. 1983, 48, 1769.
- 38. Goliaszewski, A.; Schwartz, J. Organometallics 1985, 4, 417.
- 39. Goliaszewski, A.; Schwartz, J. Tetrahedron 1985, 41, 5779.
- 40. Farina, V.; Baker, S. R.; Benigni, D. A.; Hauck, S. I.; Sapino, C., Jr. J. Org. Chem. 1990, **55**, 5833.
- 41. Vedejs, E.; Haight, A. R.; Moss, W. O. J. Am. Chem. Soc. 1992, **114**, 6556.
- 42. Brown, J. M.; Pearson, M.; Jastrzebski, J. T. B. H.; van Koten, G. J. Chem. Soc., Chem. Commun. 1992, 1440.
- 43. Peet, W. G.; Tam, W. J. Chem. Soc., Chem. Commun. 1983, 853.
- 44. Kobayashi, Y.; Kato, N.; Shimazaki, T.; Sato, F. Tetrahedron Lett. 1988, 29, 6297.
- 45. Angara, G. J.; Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1992, **33**, 2285.
- 46. Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813.
- 47. Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138.
- 48. Taniguchi, M.; Takeyama, Y.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, **64**, 2593.
- 49. Murakami, M.; Amii, H.; Takizawa, N.; Ito, Y. Organometallics 1993, **12**, 4223.
- 50. Potter, G. A.; McCague, R. J. Org. Chem. 1990, **55**, 6184.
- 51. Pearson, W. H.; Postich, M. J. J. Org. Chem. 1994, 59, 5662.
- 52. Stille, J. K.; Sweet, M. P. Tetrahedron Lett. 1989, 30, 3645.
- 53. Stille, J. K.; Sweet, M. P. Organometallics 1990, 9, 3189.
- 54. Eisley, D. A.; MacLeod, D.; Miller, J. A.; Quayle, P. Tetrahedron Lett.

1992, **33**, 409.

- Tamayo, N.; Echavarren, A. M.; Paredes, M. C. J. Org. Chem. 1991, 56, 6488.
- 56. Echavarren, A. M.; Tamayo, N.; Paredes, M. C. Tetrahedron Lett. 1993, 34, 4713.
- 57. Echavarren, A. M.; Tamayo, N.; Cárdenas, D. J. J. Org. Chem. 1994, **59**, 6075.
- 58. Chan, K. S.; Mak, C. C. Tetrahedron 1994, 50, 2003.
- 59. Paley, R. S.; de Dios, A.; Fernández de la Pradilla, R. Tetrahedron Lett. 1993, **34**, 2429.
- Paley, R. S.; Lafontaine, J. A.; Ventura, M. P. Tetrahedron Lett. 1993, 34, 3663.
- 61. Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. Tetrahedron Lett. 1992, **33**, 919.
- 62. Nishikawa, T.; Isobe, M. Tetrahedron 1994, 50, 5621.
- 63. Liebeskind, L. S.; Wang, J. Tetrahedron Lett. 1990, **31**, 4293.
- Liebeskind, L. S.; Yu, M. S.; Yu, R. H.; Wang, J.; Hagen, K. S. J. Am. Chem. Soc. 1993, **115**, 9048.
- 65. Siesel, D. A.; Staley, S. W. Tetrahedron Lett. 1993, 34, 3679.
- 66. Siesel, D. A.; Staley, S. W. J. Org. Chem. 1993, 58, 7870.
- Banwell, M. G.; Cameron, J. M.; Collis, M. P.; Crisp, G. T.; Gable, R. W.; Hamel, E.; Lambert, J. N.; Mackay, M. F.; Reum, M. E.; Scoble, J. A. Aust. J. Chem. 1991, 44, 705.
- 68. Piers, E.; Lu, Y.-F. J. Org. Chem. 1988, 53, 926.
- 69. Piers, E.; Skerlj, R. T. J. Chem. Soc., Chem. Commun. 1987, 1025.
- 70. Fujiwara, K.; Kurisaki, A.; Hirama, M. Tetrahedron Lett. 1990, 31, 4329.
- Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. J. Am. Chem. Soc. 1989, **111**, 4120.
- 72. Hirama, M.; Gomibuchi, T.; Fujiwara, K.; Sugiura, Y.; Uesugi, M. J. Am. Chem. Soc. 1991, **113**, 9851.
- 73. Tokuda, M.; Fujiwara, K.; Gomibuchi, T.; Hirama, M.; Uesugi, M.; Sugiura, Y. Tetrahedron Lett. 1993, **34**, 669.
- 74. Palmisano, G.; Santagostino, M. Synlett 1993, 771.
- Barrett, A. G. M.; Boys, M. L.; Boehm, T. L. J. Chem. Soc., Chem. Commun. 1994, 16, 1881.
- 76. Pattenden, G.; Thom, S. M. Synlett 1993, 215.
- 77. Kende, A. S.; Kawamura, K.; DeVita, R. J. J. Am. Chem. Soc. 1990, 112, 4070.
- 78. Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1991, **113**, 9693.

- 79. Férézou, J. P.; Julia, M.; Liu, L. W.; Pancrazi, A. Synlett 1991, 614.
- Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, **114**, 9434.
- 81. Barrett, A. G. M.; Edmunds, J. J.; Hendrix, J. A.; Malecha, J. W.; Parkinson, C. J. J. Chem. Soc., Chem. Commun. 1992, 1238.
- Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1994, **33**, 673.
- 83. Kende, A. S.; Koch, K.; Dorey, G.; Kaldor, I.; Liu, K. J. Am. Chem. Soc. 1993, **115**, 9842.
- 84. Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, **115**, 4497.
- Smith, A. B., III; Maleczka, R. E., Jr.; Leazer, J. L., Jr.; Leahy, J. W.; McCauley, J. A.; Condon, S. M. Tetrahedron Lett. 1994, **35**, 4911.
- Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertino, P. J. Am. Chem. Soc. 1993, **115**, 4419.
- Kashin, A. N.; Bumagina, I. G.; Bumagin, N. A.; Beletskaya, I. P. J. Org. Chem. USSR 1981, 17, 18; Chem. Abstr. 1981, 95, 43254.
- McKean, D. R.; Parrinello, G.; Renaldo, A. F.; Stille, J. K. J. Org. Chem. 1987, **52**, 422.
- Krolski, M. E.; Renaldo, A. F.; Rudisill, D. E.; Stille, J. K. J. Org. Chem. 1988, 53, 1170
- 90. Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927.
- 91. Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, **116**, 7901.
- 92. Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, **116**, 5969.
- 93. Yamamoto, Y.; Azuma, Y.; Mitoh, H. Synthesis 1986, 564.
- 94. Alves, T.; B., d. O. A.; Snieckus, V. Tetrahedron Lett. 1988, 29, 2135.
- Sakamoto, T.; Satoh, C.; Kondo, Y.; Yamanaka, H. Heterocycles 1992, 34, 2379.
- Gronowitz, S.; Björk, P.; Malm, J.; Hörnfeldt, A. B. J. Organomet. Chem. 1993, 460, 127.
- 97. Laborde, E.; Kiely, J. S.; Lesheski, L. E.; Schroeder, M. C. J. Heterocycl. Chem. 1991, 28, 191.
- Porco, J. A., Jr.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1990, **112**, 7410.
- 99. Rocca, P.; Marsais, F.; Godard, A.; Quéguiner, G. Tetrahedron Lett. 1993, **34**, 2937.
- 100. Ishida, H.; Yui, K.; Aso, Y.; Otsubo, T.; Ogura, F. Bull. Chem. Soc. Jpn. 1990, **63**, 2828.
- 101. Gronowitz, S.; Hörnfeldt, A.-B.; Yang, Y. Chem. Scr. 1988, 28, 281.
- 102. Yang, Y.; Hörnfeldt, A.-B.; Gronowitz, S. Synthesis 1989, 2, 130.

- 103. Crisp, G. T. Synth. Commun. 1989, **19**, 307.
- 104. Rossi, R.; Carpita, A.; Ciofalo, M.; Houben, J. L. Gazz. Chim. Ital. 1990, 120, 793.
- 105. Rossi, R.; Carpita, A.; Messeri, T. Synth. Commun. 1991, 12, 1875.
- 106. Barbarella, G.; Zambianchi, M. Tetrahedron 1994, 50, 1249.
- 107. Kelly, T. R.; Jagoe, C. T.; Gu, Z. Tetrahedron Lett. 1991, 32, 4263.
- 108. Dondoni, A.; Fogagnolo, M.; Medici, A.; Negrini, E. Synthesis 1987, 185.
- 109. Somei, M.; Sayama, S.; Naka, K.; Yamada, F. Heterocycles 1988, **27**, 1585.
- 110. Yang, Y.; Martin, A. R. Synth. Commun. 1992, 22, 1757.
- 111. Wang, D.; Haseltine, J. J. Heterocycl. Chem. 1994, 31, 1637.
- 112. Minakawa, N.; Sasaki, T.; Matsuda, A. Bioorg. Med. Chem. Lett. 1993, **3**, 183.
- 113. Matsuda, A.; Minakawa, N.; Sasaki, T.; Ueda, T. Chem. Pharm. Bull. 1988, **36**, 2730.
- 114. Labadie, S. S. Synth. Commun. 1994, 24, 709.
- 115. Tamao, K.; Yamaguchi, S.; Shiro, M. J. Am. Chem. Soc. 1994, **116**, 11715.
- 116. Le Floch, P.; Carmichael, D.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1993, **115**, 10665.
- 117. Nair, V.; Turner, G. A.; Chamberlain, S. D. J. Am. Chem. Soc. 1987, 109, 7223.
- 118. Nair, V.; Turner, G. A.; Buenger, G. S.; Chamberlain, S. D. J. Org. Chem. 1988, **53**, 3051.
- 119. Nair, V.; Purdy, D. F.; Sells, T. B. J. Chem. Soc., Chem. Commun. 1989, 878.
- 120. Nair, V.; Lyons, A. G. Tetrahedron 1989, 45, 3653.
- 121. Crisp, G. T. Synth. Commun. 1989, **19**, 2117.
- 122. Crisp, G. T.; Macolino, V. Synth. Commun. 1990, 20, 413.
- 123. Hassan, M. E. Collect. Czech. Chem. Commun. 1991, 56, 1944.
- 124. Wigerinck, P.; Pannecouque, C.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1991, **34**, 2383.
- 125. Herdewijn, P.; Kerremans, L.; Wigerinck, P.; Vandendriessche, F.; Van Aerschot, A. Tetrahedron Lett. 1991, **32**, 4397.
- 126. Peters, D.; Hörnfeld, A.-B.; Gronowitz, S. J. Heterocycl. Chem. 1991, **28**, 1629.
- 127. Yamamoto, Y.; Seko, T.; Nemoto, H. J. Org. Chem. 1989, 54, 4734.
- 128. Farina, V.; Hauck, S. I. Synlett 1991, 157.
- 129. Peters, D.; Hörnfeldt, A.-B.; Gronowitz, S. J. Heterocycl. Chem. 1991,

28, 1613.

- 130. Mamos, P.; Van Aerschot, A. A.; Weyns, N. J.; Herdewijn, P. A. Tetrahedron Lett. 1992, **33**, 2413.
- Moriarty, R. M.; Epa, W. R.; Awasthi, A. K. Tetrahedron Lett. 1990, 31, 5877.
- 132. Tanaka, H.; Hayakawa, H.; Shibata, S.; Haraguchi, K.; Miyasaka, T. Nucleosides Nucleotides 1992, **11**, 319.
- 133. Gundersen, L.-L. Tetrahedron Lett. 1994, 35, 3155.
- 134. Gundersen, L.-L.; Bakkestuen, A. K.; Aasen, A. J.; Øveråa, H.; Rise, F. Tetrahedron 1994, **50**, 9743.
- 135. Solberg, J.; Undheim, K. Acta Chem. Scand., Ser. B 1987, B41, 712.
- 136. Brakta, M.; Daves, G. D., Jr. J. Chem. Soc., Perkin Trans. 1 1992, 1883.
- 137. Benneche, T. Acta Chem. Scand. 1990, 44, 927.
- 138. Kondo, Y.; Watanabe, R.; Sakamoto, T.; Yamanaka, H. Chem. Pharm. Bull. 1989, **37**, 2814.
- 139. Kondo, Y.; Watanabe, R.; Sakamoto, T.; Yamanaka, H. Chem. Pharm. Bull. 1989, **37**, 2933.
- 140. Majeed, A. J.; Antonsen, O.; Benneche, T.; Undheim, K. Tetrahedron 1989, **45**, 993.
- 141. Solberg, J.; Undheim, K. Acta Chem. Scand. 1989, 43, 62.
- Watanabe, T.; Hayashi, K.; Sakurada, J.; Ohki, M.; Takamatsu, N.; Hirohata, H.; Takeuchi, K.; Yuasa, K.; Ohta, A. Heterocycles 1989, 29, 123.
- 143. DiMagno, S. G.; Lin, V. S.-Y.; Therien, M. J. J. Org. Chem. 1993, **58**, 5983.
- 144. DiMagno, S. G.; Lin, V. S.-Y.; Therien, M. J. J. Am. Chem. Soc. 1993, 115, 2513.
- 145. Deshpande, M. S. Tetrahedron Lett. 1994, **35**, 5613.
- 146. Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983, 48, 4634.
- 147. Milstein, D.; Stille, J. K. J. Org. Chem. 1979, 44, 1613.
- 148. Echavarren, A. M.; Pérez, M.; Castaño, A. N.; Cuerva, J. M. J. Org. Chem. 1994, 59, 4179.
- 149. Logue, M. W.; Teng, K. J. Org. Chem. 1982, 47, 2549.
- 150. Andrianome, M.; Delmond, B. J. Org. Chem. 1988, 53, 542.
- 151. Gaare, K.; Repstad, T.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1993, **47**, 57.
- 152. Degl'Innocenti, A.; Dembech, P.; Mordini, A.; Ricci, A.; Seconi, G. Synthesis 1991, 267.
- 153. Baldwin, J. E.; Adlington, R. M.; Ramcharitar, S. H. J. Chem. Soc.,

Chem. Commun. 1991, 940.

- 154. Baldwin, J. E.; Adlington, R. M.; Ramcharitar, S. H. Tetrahedron 1992, 48, 2957.
- 155. Linderman, R. J.; Graves, D. M.; Kwochka, W. R.; Ghannam, A. F.; Anklekar, T. V. J. Am. Chem. Soc. 1990, **112**, 7438.
- 156. Four, P.; Guibé, F. J. Org. Chem. 1981, 46, 4439.
- 157. Balas, L.; Jousseaume, B.; Shin, H.; Verlhac, J.-B.; Wallian, F. Organometallics 1991, **10**, 366.
- 158. Jousseaume, B.; Kwon, H.; Verlhac, J.-B.; Denat, F.; Dubac, J. Synlett 1993, 117.
- Adlington, R. M.; Baldwin, J. E.; Gansaeuer, A.; McCoull, W.; Russell, A. T. J. Chem. Soc., Perkin Trans. 1 1994, 1697.
- 160. Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2591.
- 161. Bumagin, N. A.; Kasatkin, A. N.; Beletskaya, I. P. Dokl. Akad. Nauk SSSR 1982, 266, 862; Chem. Abstr. 1982, 98, 143554.
- 162. Kosugi, M.; Ohashi, K.; Akuzawa, K.; Kawazoe, T.; Sano, H.; Migita, T. Chem. Lett. 1987, 1237.
- 163. Del Valle, L.; Stille, J. K.; Hegedus, L. S. J. Org. Chem. 1990, 55, 3019.
- 164. Tueting, D. R.; Echavarren, A. M.; Stille, J. K. Tetrahedron 1989, **45**, 979.
- 165. Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48, 5302.
- 166. Ni, Z.; Padwa, A. Synlett 1992, 869.
- 167. Boden, C.; Pattenden, G. Synlett 1994, 181.
- 168. Dangles, O.; Guibé, F.; Balavoine, G.; Lavielle, S.; Marquet, A. J. Org. Chem. 1987, **52**, 4984.
- 169. Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981, 215, 49.
- 170. Palmisano, G.; Santagostino, M. Tetrahedron 1993, 49, 2533.
- 171. Sustmann, R.; Lau, J.; Zipp, M. Tetrahedron Lett. 1986, 27, 5207.
- 172. Rayner, C. M.; Astles, P. C.; Paquette, L. A. J. Am. Chem. Soc. 1992, 114, 3926.
- 173. Hettrick, C. M.; Kling, J. K.; Scott, W. J. J. Org. Chem. 1991, 56, 1489.
- 174. Marino, J. P.; Long, J. K. J. Am. Chem. Soc. 1988, **110**, 7916.
- 175. Scott, W. J.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47.
- 176. Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K. S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K. J. Org. Chem. 1986, **51**, 277.
- 177. Gibbs, R. A.; Krishnan, U. Tetrahedron Lett. 1994, **35**, 2509.
- 178. Piers, E.; Friesen, R. W. J. Chem. Soc., Chem. Commun. 1988, 125.

- 179. Piers, E.; Friesen, R. W. Can. J. Chem. 1987, 65, 1681.
- 180. Piers, E.; Llinas-Brunet, M. J. Org. Chem. 1989, 54, 1483.
- 181. Piers, E.; Friesen, R. W.; Keay, B. A. Tetrahedron 1991, 47, 4555.
- 182. Piers, E.; Friesen, R. W. Can. J. Chem. 1992, 70, 1204.
- 183. Piers, E.; Llinas-Brunet, M.; Oballa, R. M. Can. J. Chem. 1993, 71, 1484.
- 184. Piers, E.; Friesen, R. W. J. Org. Chem. 1986, 51, 3405.
- 185. Stille, J. K.; Tanaka, M. J. Am. Chem. Soc. 1987, 109, 3785.
- 186. Stille, J. K.; Su, H.; Hill, D. H.; Schneider, P.; Tanaka, M.; Morrison, D. L.; Hegedus, L. S. Organometallics 1991, **10**, 1993.
- 187. Moriarty, R. M.; Epa, W. R. Tetrahedron Lett. 1992, **33**, 4095.
- 188. Hinkle, R. J.; Poulter, G. T.; Stang, P. J. J. Am. Chem. Soc. 1993, **115**, 11626.
- 189. Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478.
- 190. Saá, J. M.; Martorell, G.; García-Raso, A. J. Org. Chem. 1992, 57, 678.
- 191. Saá, J. M.; Martorell, G. J. Org. Chem. 1993, 58, 1963.
- 192. Crisp, G. T.; Papadopoulos, S. Aust. J. Chem. 1988, 41, 1711.
- 193. Edstrom, E. D.; Wei, Y. J. Org. Chem. 1994, 59, 6902.
- 194. Crisp, G. T.; Papadopoulos, S. Aust. J. Chem. 1989, 42, 279.
- 195. Robl, J. A. Synthesis 1991, 56.
- 196. Sandosham, J.; Undheim, K. Heterocycles 1994, 37, 501.
- 197. Cook, G. K.; Hornback, W. J.; Jordan, C. L.; McDonald, J. H., III; Munroe, J. E. J. Org. Chem. 1989, **54**, 5828.
- 198. Rano, T. A.; Greenlee, M. L.; DiNinno, F. P. Tetrahedron Lett. 1990, **31**, 2853.
- 199. Crisp, G. T.; Flynn, B. L. Tetrahedron Lett. 1990, **31**, 1347.
- 200. Peña, M. R.; Stille, J. K. J. Am. Chem. Soc. 1989, **111**, 5417.
- 201. Chen, Q.-Y.; He, Y.-B.; Yang, Z.-Y. Youji Huaxue 1987, 474; Chem. Abstr. 1987, **109**, 109940.
- 202. Badone, D.; Cecchi, R.; Guzzi, U. J. Org. Chem. 1992, 57, 6321.
- 203. Roth, G. P.; Fuller, C. E. J. Org. Chem. 1991, 56, 3493.
- 204. Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1983, **48**, 1333.
- 205. Brigas, A. F.; Johnstone, R. A. J. Chem. Soc., Chem. Commun. 1994, 1923.
- 206. Bumagin, N. A.; Sukhomlinova, A. N.; Igushkina, S. O.; Banchikov, A. N.; Tolstaya, T. P.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1992, 42, 2128; not in Chem. Abstr.
- 207. Bhatt, R. K.; Shin, D. S.; Falck, J. R.; Mioskowski, C. Tetrahedron Lett. 1992, **33**, 4885.

- 208. Simpson, J. H.; Stille, J. K. J. Org. Chem. 1985, 50, 1759.
- 209. Pri-Bar, I.; Pearlman, P. S.; Stille, J. K. J. Org. Chem. 1983, 48, 4629.
- 210. Matsubara, S.; Mitani, M.; Utimoto, K. Tetrahedron Lett. 1987, 28, 5857.
- 211. Kobayashi, T.; Sakakura, T.; Tanaka, M. Tetrahedron Lett. 1985, **26**, 3463.
- 212. Ito, Y.; Inouye, M.; Yokota, H.; Murakami, M. J. Org. Chem. 1990, **55**, 2567.
- 213. Bhatt, R. K.; Chauhan, K.; Wheelan, P.; Murphy, R. C.; Falck, J. R. J. Am. Chem. Soc. 1994, **116**, 5050.
- 214. Hollingworth, G. J.; Sweeney, J. B. Synlett 1993, 463.
- 215. Beaudet, I.; Parrain, J. L.; Quintard, J. P. Tetrahedron Lett. 1992, **33**, 3647.
- 216. Shair, M. D.; Yoon, T.; Danishefsky, S. J. J. Org. Chem. 1994, **59**, 3755.
- 217. Gilbert, A. M.; Wulff, W. D. J. Am. Chem. Soc. 1994, 116, 7449.
- 218. Bunz, U. H. F.; Enkelmann, V.; Räder, J. Organometallics 1993, **12**, 4745.
- 219. Bunz, U. H. F.; Enkelmann, V. Angew. Chem., Int. Ed. Engl. 1993, **32**, 1653.
- 220. Bunz, U. H. F.; Enkelmann, V. Organometallics 1994, **13**, 3823.
- 221. Jevnaker, N.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1993, **47**, 406.
- 222. Uemura, M.; Nishimura, H.; Hayashi, T. Tetrahedron Lett. 1993, 34, 107.
- 223. Wiegelmann, J. E. C.; Bunz, U. H. F. Organometallics 1993, **12**, 3792.
- 224. Wiegelmann, J. E. C.; Bunz, U. H. F.; Schiel, P. Organometallics 1994, **13**, 4649.
- 225. Wright, M. E.; Pulley, S. R. Macromolecules 1989, 22, 2542.
- 226. Lo Sterzo, C.; Miller, M. M.; Stille, J. K. Organometallics 1989, 8, 2331.
- 227. Scott, W. J. J. Chem. Soc., Chem. Commun. 1987, 23, 1755.
- 228. Rolland, H.; Potin, P.; Majoral, J.-P.; Bertrand, G. Tetrahedron Lett. 1992, **33**, 8095.
- 229. Labadie, S. S. J. Org. Chem. 1989, 54, 2496.
- 230. Lo Sterzo, C. J. Chem. Soc., Dalton Trans. 1992, 1989.
- 231. Crescenzi, R.; Lo Sterzo, C. Organometallics 1992, 11, 4301.
- 232. Deeter, G. A.; Moore, J. S. Organometallics 1993, 26, 2535.
- 233. Kosugi, M.; Sumiya, T.; Ohhashi, K.; Sano, H.; Migita, T. Chem. Lett. 1985, 997.
- 234. Kosugi, M.; Sumiya, T.; Ogata, T.; Sano, H.; Migita, T. Chem. Lett. 1984, 1225.
- 235. Kosugi, M.; Ishiguro, M.; Negishi, Y.; Sano, H.; Migita, T. Chem. Lett.

1984, 1511.

- 236. Kosugi, M.; Negishi, Y.; Kameyama, M.; Migita, T. Bull. Chem. Soc. Jpn. 1985, **58**, 3383.
- 237. Kosugi, M.; Suzuki, M.; Hagiwara, I.; Goto, K.; Saitoh, K.; Migita, T. Chem. Lett. 1982, 939.
- 238. Kosugi, M.; Hagawara, I.; Sumiya, T.; Migita, T. J. Chem. Soc., Chem. Commun. 1983, 344.
- 239. Kosugi, M.; Hagiwara, I.; Migita, T. Chem. Lett. 1983, 839.
- 240. Kosugi, M.; Hagiwara, I.; Sumiya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1984, **57**, 242.
- 241. Kuwajima, I.; Urabe, H. J. Am. Chem. Soc. 1982, **104**, 6831.
- 242. Ye, J.; Bhatt, R. K.; Falck, J. R. Tetrahedron Lett. 1993, 34, 8007.
- 243. Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1.
- 244. Nativi, C.; Ricci, A.; Taddei, M. Tetrahedron Lett. 1990, 31, 2637.
- 244a. Crisp, G. T.; Glink, P. T. Tetrahedron 1994, **50**, 2623.
- 245. Busacca, C. A.; Swestock, J.; Johnson, R. E.; Bailey, T. R.; Musza, L.; Roger, C. A. J. Org. Chem. 1994, **59**, 7553.
- 246. Levin, J. I. Tetrahedron Lett. 1993, 34, 6211.
- 247. Acuña, A. C.; Zapata, A. Synth. Commun. 1988, 18, 1133.
- 248. Acuña, A. C.; Zapata, A. Synth. Commun. 1988, 18, 1125.
- 249. Kikukawa, K.; Umekawa, H.; Matsuda, T. J. Organomet. Chem. 1986, **311**, C44.
- 250. Renaldo, A. F.; Ito, H. Synth. Commun. 1987, 17, 1823.
- 251. Cummins, C. H.; Gordon, E. J. Tetrahedron Lett. 1994, 35, 8133.
- 252. Takle, A.; Kocienski, P. Tetrahedron 1990, 46, 4503.
- 253. Pimm, A.; Kocienski, P.; Street, S. D. A. Synlett 1992, 886.
- 254. Mitchell, T. N.; Reimann, W. Organometallics 1986, 5, 1991.
- 255. Chenard, B. L.; Van Zyl, C. M.; Sanderson, D. R. Tetrahedron Lett. 1986, **27**, 2801.
- 256. Mitchell, T. N.; Wickenkamp, R.; Amamria, A.; Dicke, R.; Schneider, U. J. Org. Chem. 1987, **52**, 4868.
- 257. Kiely, J. S.; Laborde, E.; Lesheski, L. E.; Bucsh, R. A. J. Heterocycl. Chem. 1991, **28**, 1581.
- 258. Laborde, E.; Lesheski, L. E.; Kiely, J. S. Tetrahedron Lett. 1990, **31**, 1837.
- 259. Houpis, I. N.; DiMichele, L.; Molina, A. Synlett 1993, 365.
- 260. Farina, V.; Hauck, S. I. J. Org. Chem. 1991, 56, 4317.
- 261. Hollingworth, G. J.; Sweeney, J. B. Tetrahedron Lett. 1992, 33, 7049.
- 262. Xu, Y.; Jin, F.; Huang, W. J. Org. Chem. 1994, 59, 2638.

- Matthews, D. P.; Gross, R. S.; McCarthy, J. R. Tetrahedron Lett. 1994, 35, 1027.
- 264. Matthews, D. P.; Wadi, P. P.; Sabol, J. S.; McCarthy, J. R. Tetrahedron Lett. 1994, **35**, 5177.
- Sorokina, R. S.; Rybakova, L. F.; Kalinovskii, I. O.; Chernoplekova, V. A.; Beletskaya, I. P. J. Org. Chem. USSR 1982, 18, 2180.
- 266. Sorokina, R. S.; Rybakova, L. F.; Kalinovskii, I. O.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 34, 1506; not in Chem. Abstr.
- 267. Liebeskind, L. S.; Stone, G. B.; Zhang, S. J. Org. Chem. 1994, 59, 7917.
- 268. Liebeskind, L. S.; Yu, M. S.; Fengl, R. W. J. Org. Chem. 1993, 58, 3543.
- 269. Kosugi, M.; Sumiya, T.; Obara, Y.; Suzuki, M.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1987, **60**, 767.
- 270. Kwon, H. B.; McKee, B. H.; Stille, J. K. J. Org. Chem. 1990, 55, 3114.
- 271. Blanchot, V.; Fétizon, M.; Hanna, I. Synthesis 1990, 755.
- 272. Sakamoto, T.; Kondo, Y.; Yasuhara, A.; Yamanaka, H. Heterocycles 1990, **31**, 219.
- 273. Sakamoto, T.; Kondo, Y.; Yasuhara, A.; Yamanaka, H. Tetrahedron 1991, **47**, 1877.
- 274. Sakamoto, T.; Satoh, C.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1993, **41**, 81.
- 275. Aidhen, I. S.; Braslau, R. Synth. Commun. 1994, 24, 789.
- 276. Badone, D.; Cardamone, R.; Guzzi, U. Tetrahedron Lett. 1994, **35**, 5477.
- 277. Nativi, C.; Taddei, M.; Mann, A. Tetrahedron 1989, 45, 1131.
- 278. Lipshutz, B. H.; Alami, M. Tetrahedron Lett. 1993, 34, 1433.
- 279. Haack, R. A.; Penning, T. D.; Djuric, S. W.; Dziuba, J. A. Tetrahedron Lett. 1988, **29**, 2783.
- 280. Gómez-Bengoa, E.; Echavarren, A. M. J. Org. Chem. 1991, 56, 3497.
- 281. Rai, R.; Aubrecht, K. B.; Collum, D. B. Tetrahedron Lett. 1995, 36, 3111.
- 282. Roshchin, A. I.; Bumagin, N. A.; Beletskaya, I. P. Tetrahedron Lett. 1995, **36**, 125.
- 283. Garcia Martínez, A.; J., O. B.; de Fresno Cerezo, A.; Subramanian, L. R. Synlett 1994, 1047.
- 284. Yamamoto, Y.; Yanagi, A. Chem. Pharm. Bull. 1982, 30, 2003.
- 285. Yamamoto, Y.; Yanagi, A. Heterocycles 1982, 19, 41.
- 286. Bailey, T. R. Tetrahedron Lett. 1986, 27, 4407.
- 287. Yang, Y.; Wong, H. N. C. Tetrahedron 1994, **50**, 9583.
- 288. Bailey, T. R. Synthesis 1991, 242.
- 289. Palmisano, G.; Santagostino, M. Helv. Chim. Acta 1993, 76, 2356.

- 290. Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127.
- 291. Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1994, 35, 2405.
- 292. Kondo, Y.; Uchiyama, D.; Sakamoto, T.; Yamanaka, H. Tetrahedron Lett. 1989, **30**, 4249.
- 293. Gothelf, K.; Thomsen, I. B.; Torssell, K. B. G. Acta Chem. Scand. 1992, **46**, 494.
- 294. Aoyagi, Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga, K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honma, R.; Akita, Y.; Ohta, A. Heterocycles 1992, **33**, 257.
- 295. Liebeskind, L. S.; Wang, J. J. Org. Chem. 1993, 58, 3550.
- 296. Pearce, B. C. Synth. Commun. 1992, 22, 1627.
- 297. Dubois, E.; Beau, J.-M. Tetrahedron Lett. 1990, 31, 5165.
- 298. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808.
- 299. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 2572.
- 300. Friesen, R. W.; Loo, R. W.; Sturino, C. F. Can. J. Chem. 1994, 72, 1262.
- 301. Zhang, H.-C.; Brakta, M.; Daves, G. D., Jr. Tetrahedron Lett. 1993, **34**, 1571.
- 302. Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Synlett 1992, 502.
- 303. Farina, V. Comprehensive Organometallic Chemistry 1995, **12**, 161.
- 304. Andrianome, M.; Häberle, K.; Delmond, B. Tetrahedron 1989, 45, 1079.
- 305. Verlhac. J.-B.; Pereyre, M.; Quintard, J.-P. Tetrahedron 1990, 46, 6399.
- 306. Yamamoto, Y.; Hatsuya, S.; Yamada, J.-i. J. Org. Chem. 1990, **55**, 3118.
- 307. Verlhac, J.-B.; Chanson, E.; Jousseaume, B.; Quintard, J.-P. Tetrahedron Lett. 1985, **26**, 6075.
- 308. Bumagin, N. A.; Gulevich, Y. V.; Beletskaya, I. P. J. Organomet. Chem. 1985, **282**, 421.
- 309. Mitchell, T. N.; Kwetkat, K. Synthesis 1990, 1001.
- 310. Kosugi, M.; Shimizu, K.; Ohtani, A.; Migita, T. Chem. Lett. 1981, 829.
- 311. Kosugi, M.; Ohya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1983, 56, 3855.
- 312. Bumagin, N. A.; Bumagina, I. G.; Beletskaya, I. P. Dokl. Akad. Nauk SSSR 1984, **274**, 1103; Chem. Abstr. 1984, **101**, 72854.
- 313. Bumagin, N. A.; Gulevich, Y. V.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, 33, 1044; not in Chem. Abstr.
- 314. Bumagin, N. A.; Kasatkin, A. N.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, 33, 588; not in Chem. Abstr.
- 315. Bumagin, N. A.; Gulevich, Y. V.; Artamkina, G. A.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, **33**, 1098; not in Chem. Abstr.
- 316. Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T. Nippon Kagaku Kaishi 1985, **3**, 547; Chem. Abstr. 1985, **104**, 129990.
- 317. Carpita, A.; Rossi, R.; Scamuzzi, B. Tetrahedron Lett. 1989, 30, 2699.
- 318. Kosugi, M.; Ogata, T.; Terada, M.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1985, **58**, 3657.
- 319. Jixiang, C.; Crisp, G. T. Synth. Commun. 1992, 22, 683.
- 320. Lebedev, S. A.; Starosel'skaya, L. F.; Shifrina, R. R.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1983, **32**, 597; not in Chem. Abstr.
- 321. Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748.
- 322. Keinan, E.; Sahai, M.; Roth, Z.; Nudelman, A.; Herzig, J. J. Org. Chem. 1985, **50**, 3558.
- 323. Tanaka, M. Tetrahedron Lett. 1979, 28, 2601.
- 324. Goure, W. F.; Wright, M. E.; Davis, P. D.; Labadie, S. S.; Stille, J. K. J. Am. Chem. Soc. 1984, **106**, 6417.
- 325. Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 7175.
- 326. Bumagin, N. A.; Bumagina, I. G.; Kashin, A. N.; Beletskaya, I. P. Dokl. Akad. Nauk SSSR 1981, **261**, 1141; Chem. Abstr. 1981, **96**, 104426.
- 327. Davies, S. G.; Pyatt, D.; Thomson, C. J. Organomet. Chem. 1990, **387**, 381.
- 328. Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293.
- 329. Bumagin, N. A.; Gulevich, Y. V.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, **33**, 879; not in Chem. Abstr.
- 330. Bumagin, N. A.; Gulevich, Y. V.; Beletskaya, I. P. J. Organomet. Chem. 1985, **285**, 415.
- 331. Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452.
- 332. Cowell, A.; Stille, J. K. J. Am. Chem. Soc. 1980, **102**, 4193.
- 333. Merrifield, J. H.; Godschalx, J. P.; Stille, J. K. Organometallics 1984, **3**, 1108.
- 334. Crisp, G. T.; Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1984, **106**, 7500.
- 335. Gyorkos, A. C.; Stille, J. K.; Hegedus, L. S. J. Am. Chem. Soc. 1990, 112, 8465.
- 336. Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1988, **110**, 1557.
- 337. Kobayashi, T.; Tanaka, M. J. Organomet. Chem. 1981, 205, C27.
- 338. Masters, J. J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 4547.
- 339. Masters, J. J.; Hegedus, L. S.; Tamariz, J. J. Org. Chem. 1991, **56**, 5666.

- 340. Kikukawa, K.; Idemoto, T.; Katayama, A.; Kono, K.; Wada, F.; Matsuda, T. J. Chem. Soc., Perkin Trans. 1 1987, 1511.
- 341. Kosugi, M.; Tamura, H.; Sano, H.; Migita, T. Chem. Lett. 1987, 193.
- 342. Kosugi, M.; Tamura, H.; Sano, H.; Migita, T. Tetrahedron 1989, 45, 961.
- 343. Oda, H.; Ito, K.; Kosugi, M.; Migita, T. Chem. Lett. 1994, 8, 1443.
- 344. Larock, R. C.; Lee, N. H. J. Org. Chem. 1991, 56, 6253.
- 345. Oppolzer, W.; Ruiz-Montes, J. Helv. Chim. Acta 1993, 76, 1266.
- 346. Grigg, R.; Sukirthalingam, S.; Sridharan, V. Tetrahedron Lett. 1991, **32**, 2545.
- 347. Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, **29**, 5565.
- 348. Wang, R.-T.; Chou, F.-L.; Luo, F.-T. J. Org. Chem. 1990, 55, 4846.
- 349. Luo, F.-T.; Wang, R.-T. Tetrahedron Lett. 1991, 32, 7703.
- 350. Negishi, E.-i.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, **31**, 4393.
- 351. Nuss, J. M.; Levine, B. H.; Rennels, R. A.; Heravi, M. M. Tetrahedron Lett. 1991, **32**, 5243.
- 352. Nuss, J. M.; Rennels, R. A.; Levine, B. H. J. Am. Chem. Soc. 1993, **115**, 6991.
- 353. Torii, S.; Okumoto, H.; Tadokoro, T.; Nishimura, A.; Rashid, M. A. Tetrahedron Lett. 1993, **34**, 2139.
- 354. Nuss, J. M.; Murphy, M. M.; Rennels, R. A.; Heravi, M. H.; Mohr, B. J. Tetrahedron Lett. 1993, **34**, 3079.
- 355. Grigg, R.; Redpath, J.; Sridharan, V.; Wilson, D. Tetrahedron Lett. 1994, **35**, 4429.
- 356. Kosugi, M.; Sakaya, T.; Ogawa, S.; Migita, T. Bull. Chem. Soc. Jpn. 1993, **66**, 3058.
- 357. Ikeda, S.-i.; Cui, D.-M.; Sato, Y. J. Org. Chem. 1994, 59, 6877.
- 358. Barry, J.; Kodadek, T. Tetrahedron Lett. 1994, 35, 2465.
- 359. Krysan, D. J.; Gurski, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1992, **114**, 1412.
- Edwards, J. P.; Krysan, D. J.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 9868.
- 361. Edwards, J. P.; Krysan, D. J.; Liebeskind, L. S. J. Org. Chem. 1993, **58**, 3942.
- 362. Birchler, A. G.; Liu, F.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 7737.
- 363. Liebeskind, L. S.; Wang, J. Tetrahedron 1993, 49, 5461.
- 364. Chatani, N.; Amishiro, N.; Murai, S. J. Am. Chem. Soc. 1991, 113, 7778.
- 365. Tolstikov, G. A.; Miftakhov, M. S.; Danilova, N. A.; Vel'der, Y. L.;

Spirikhin, L. V. Synthesis 1989, 625.

- 366. Tolstikov, G. A.; Miftakhov, M. S.; Danilova, N. A.; Vel'der, Y. L.; Spirikhin, L. V. Synthesis 1989, 633.
- 367. Bumagin, N. A.; Ponomarev, A. B.; Beletskaya, I. P. J. Org. Chem. USSR 1988, **23**, 1222.
- 368. van Asselt, R.; Elsevier, C. J. Organometallics 1994, 13, 1972.
- 369. Brehm, E. C.; Stille, J. K.; Meyers, A. I. Organometallics 1992, 11, 938.
- 370. Tamayo, N.; Echavarren, A. M.; Paredes, M. C.; Fariña, F.; Noheda, P. Tetrahedron Lett. 1990, **31**, 5189
- 371. Keay, B. A.; Bontront, J. L. J. Can. J. Chem. 1991, 69, 1326.
- 372. Tius, M. A.; Gu, X.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, **112**, 8188.
- 373. Stork, G.; Isaacs, R. C. A. J. Am. Chem. Soc. 1990, 112, 7399.
- 374. Flynn, B. L.; Macolino, V.; Crisp, G. T. Nucleosides Nucleotides 1991, **10**, 763.
- 375. Crisp, G. T.; Glink, P. T. Tetrahedron 1994, 50, 3213.
- 376. Kuhn, H.; Neumann, W. Synlett 1994, 123.
- 377. Kong, K.-C.; Cheng, C.-H. J. Am. Chem. Soc. 1991, **113**, 6313.
- 378. Sagelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem. 1995, **60**, 12.
- Martorell, G.; Garcia-Raso, A.; Saá, J. M. Tetrahedron Lett. 1990, 31, 2357.
- 380. Renaldo, A. F.; Labadie, J. W.; Stille, J. K. Org. Synth. 1989, 67, 86.
- 381. Crisp, G. T.; Bubner, T. P. Synth. Commun. 1990, 20, 1665.
- 382. Lee, E.; Hur, C. U.; Jeong, Y. C.; Rhee, Y. H.; Chang, M. H. J. Chem. Soc., Chem. Commun. 1991, 1314.
- 383. Tilley, J. W.; Sarabu, R.; Wagner, R.; Mulkerins, K. J. Org. Chem. 1990, 55, 906.
- 384. Gothelf, K. V.; Torssell, K. B. G. Acta Chem. Scand. 1994, 48, 165.
- 385. Zapata, A. J.; Ruíz, J. J. Organomet. Chem. 1994, 479, C6.
- 386. Negishi, E.-i.; Owczarczyk, Z. Tetrahedron Lett. 1991, 32, 6683.
- 387. Stracker, E. C.; Zweifel, G. Tetrahedron Lett. 1991, 32, 3329.
- 388. Friesen, R. W.; Loo, R. W. J. Org. Chem. 1991, 56, 4821.
- 389. Tius, M.; Gomez-Galeno, J.; Gu, X.-Q.; Zaidi, J. H. J. Am. Chem. Soc. 1991, **113**, 5775.
- 390. Lamba, J. J. S.; Tour, J. M. J. Am. Chem. Soc. 1994, 116, 11723.
- 391. Clough, J. M.; Mann, I. S.; Widdowson, D. A. Tetrahedron Lett. 1987, 28, 2645.
- 392. Mann, I. S.; Widdowson, D. A.; Clough, J. M. Tetrahedron 1991, 47,

7981.

- 393. Ishiyama, T.; Miyaura, N.; Suzuki, A. Synlett 1991, 687.
- 394. Krigman, M. R.; Silverman, A. P. Neurotoxicology 1984, 5, 129.
- 395. Pereyre, M.; Quintard, J.-P.; Rahm, A. *Tin in Organic Synthesis*; Butterworths: London, 1987.
- 396. Jones, K.; Lappert, M. F. J. Organomet. Chem. 1965, 3, 295.
- 397. Farina, V. J. Org. Chem. 1991, 56, 4895.
- 398. Stang, P. J.; Treptow, W. Synthesis 1980, 283.
- 399. Stang, P. J.; Fox, T. E. Synthesis 1979, 438.
- 400. Scott, W. J.; McMurry, J. E. Tetrahedron Lett. 1983, 24, 979.
- 401. Crisp, G. T.; Scott, W. J. Synthesis 1985, 335.
- 402. Stang, P. J.; Summerville, R. J. Am. Chem. Soc. 1969, 91, 4600.
- 403. Summerville, R. H.; Senkler, C. A.; Schleyer, P. v. R.; Dueber, T. E.; Stang, P. J. J. Am. Chem. Soc. 1974, 96, 1100.
- 404. Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 4607.
- 405. Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85.
- 406. Ritter, K. Synthesis 1993, 735.
- 407. Coulson, D. R. Inorg. Synth. 1972, 13, 121.
- 408. Takahashi, I.; Ito, T.; Sakai, S.; Ishii, Y. J. Chem. Soc., Chem. Commun. 1970, 1065.
- 409. Kharash, M. S.; Seyler, R. C.; Mayo, F. R. J. Am. Chem. Soc. 1938, **60**, 882.
- 410. Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, **39**, 3318.
- 411. Feltham, R. D.; Elbaze, G.; Ortega, R.; Eck, C.; Dubrawski, J. Inorg. Chem. 1985, 24, 1503.
- 412. Fitton, P.; McKeon, J. E.; Ream, B. C. J. Chem. Soc., Chem. Commun. 1969, 370.
- 413. Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, **106**, 158.
- 414. Dent, W. T.; Long, R.; Wilkinson, A. J. J. Chem. Soc. 1964, 1585.
- 415. van Asselt, R.; Elsevier, C. J. Tetrahedron 1994, **50**, 323.
- 416. Wright, S. W.; Harris, R. R.; Collins, R. J.; Corbett, R. L.; Green, A. M.; Wadman, E. A.; Batt, D. G. J. Med. Chem. 1992, **35**, 3148.
- 417. Mori, M.; Kaneta, N.; Shibasaki, M. J. Org. Chem. 1991, 56, 3486.
- 418. Patel, H. K.; Kilburn, J. D.; Langley, G. J.; Edwards, P. D.; Mitchell, T.; Southgate, R. Tetrahedron Lett. 1994, **35**, 481.
- 419. Schwede, W.; Cleve, A.; Neef, G.; Ottow, E.; Stöckemann, K.; Wiechert, R. Steroids 1994, **59**, 176
- 420. Stille, J. K.; Echavarren, A. M.; Williams, R. M.; Hendrix, J. A. Org.

Synth, 1993, **71**, 97.

- 420a. Curran, D. P.; Chang, C.-T. J. Org. Chem. 1989, 54, 3140.
- 421. Scott, W. J.; Crisp, G. T.; Stille, J. K. Org. Synth. 1989, 68, 116.
- 422. Untiedt, S.; de Meijere, A. Chem. Ber. 1954, 127, 1511.
- 423. Dubois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1990, **17**, 1191.
- 424. Dubois, E.; Beau, J.-M. Carbohydr. Res. 1992, 228, 103.
- 425. Labadie, S. S.; Teng, E. J. Org. Chem. 1994, 59, 4250.
- 426. Kosugi, M.; Fukiage, A.; Takayanagi, M.; Sano, H.; Migita, T.; Satoh, M. Chem. Lett. 1988, 1351.
- 427. Yamamoto, Y.; Hatsuya, S.; Yamada, J.-i. J. Chem. Soc., Chem. Commun. 1988, 86.
- 428. Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, **112**, 1607.
- 429. MacLeod, D.; Moorcroft, D.; Quayle, P.; Dorrity, M. R. J.; Malone, J. F.; Davies, G. M. Tetrahedron Lett. 1990, **31**, 6077.
- 430. Duchene, A.; Abarbri, M.; Parrain, J.-L.; Kitamura, M.; Noyori, R. Synlett 1994, **7**, 524.
- 431. Hatanaka, Y.; Matsui, K.; Hiyama, T. Tetrahedron Lett. 1989, 30, 2403.
- 432. Yang, Y.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1992, 1723.
- Keenan, R. M.; Weinstock, J.; Finkelstein, J. A.; Franz, R. G.; Gaitanopoulos, D. E.; Girard, G. R.; Hill, D. T.; Morgan, T. M.; Samanen, J. M.; Hempel, J.; Eggleston, D. S.; Aiyar, N.; Griffin, E.; Olhstein, E. H.; Stack, E. J.; Weidley, E. F.; Edwards, R. J. Med. Chem. 1992, **35**, 3858.
- 434. Rossi, R.; Carpita, A.; Ciofalo, M.; Lippolis, V. Tetrahedron 1991, **47**, 8443.
- 435. Bellina, F.; Carpita, A.; De Santis, M.; Rossi, R. Tetrahedron 1994, **50**, 12029.
- 436. Houpis, I. N. Tetrahedron Lett. 1991, **32**, 6675.
- 437. Lindsay, C. M.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1988, 569.
- 438. Takayama, H.; Suzuki, T. J. Chem. Soc., Chem. Commun. 1988, 1044.
- 439. Casson, S.; Kocienski, P. J. Chem. Soc., Perkin Trans. 1 1994, 1187.
- 440. Adam, W.; Klug, P. J. Org. Chem. 1994, **59**, 2695.
- 441. Férézou, J. P.; Julia, M.; Li, Y.; Liu, L. W.; Pancrazi, A. Synlett 1991, 53.
- 442. Sharma, S.; Oehlschlager, A. C. J. Org. Chem. 1989, 54, 5064.
- 443. Kiehl, A.; Eberhardt, A.; Adam, M.; Enkelmann, V.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1992, **31**, 1588.
- 444. Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106,

4630.

- 445. Lin, H.-S.; Rampersaud, A. A.; Zimmerman, K.; Steinberg, M. I.; Boyd, D. B. J. Med. Chem. 1992, **35**, 2658.
- 446. Bellina, F.; Carpita, A.; Ciucci, D.; De Santis, M.; Rossi, R. Tetrahedron 1993, **49**, 4677.
- 447. Ostwald, R.; Chavant, P.-Y.; Stadtmüller, H.; Knochel, P. J. Org. Chem. 1994, **59**, 4143.
- 448. Farina, V.; Roth, G. P. Tetrahedron Lett. 1991, **32**, 4243.
- 449. Wender, P. A.; Tebbe, M. J. Synthesis 1991, 1089.
- 450. Boyd, D. R.; Hand, M. V.; Sharma, N. D.; Chima, J.; Dalton, H.; Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1991, 1630.
- 451. Pearson, A. J.; Holden, M. S. J. Organomet. Chem. 1990, 383, 307.
- 452. Lee, J.; Snyder, J. K. J. Org. Chem. 1990, 55, 4995.
- 453. Baker, S. R.; Roth, G. P.; Sapino, C. Synth. Commun. 1990, 20, 2185.
- 454. Niwa, H.; Watanabe, M.; Inagaki, H.; Yamada, K. Tetrahedron 1994, **50**, 7385.
- 455. Paterson, I.; Gardner, M.; Banks, B. J. Tetrahedron 1989, 45, 5283.
- 456. Banwell, M. G.; Collis, M. P.; Crisp, G. T.; Lambert, J. N.; Reum, M. E.; Scoble, J. A. J. Chem. Soc., Chem. Commun. 1989, 616.
- 457. Verlhac, J.-B.; Pereyre, M.; Shin, H. Organometallics 1991, 10, 3007.
- 458. Sandosham, J.; Undheim, K. Tetrahedron 1994, 50, 275.
- 459. Arukwe, J.; Benneche, T.; Undheim, K. J. Chem. Soc., Perkin Trans. 1 1989, 255.
- 460. Kosugi, M.; Ogata, T.; Terada, M.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1985, **58**, 3657.
- 461. Roth, G. P.; Farina, V.; Liebeskind, L. S.; Pena-Cabrera, E. Tetrahedron Letters 1995, **36**, 2191.
- 462. Corriu, R. J. P.; Geng, B.; Moreau, J. J. E. J. Org. Chem. 1993, **58**, 1443.
- 463. Bumagin, N. A.; Bumagina, I. G.; Beletskaya, I. P. Dokl. Chem. 1983, 333; not in Chem. Abstr.
- 464. Corriu, R. J. P.; Bolin, G.; Moreau, J. J. E. Bull. Soc. Chim. Fr. 1993, 130, 273.
- 465. Capella, L.; Degl'Innocenti, A.; Mordini, A.; Reginato, G.; Ricci, A.; Seconi, G. Synthesis 1991, 1201.
- 466. Kende, A. S.; DeVita, R. J. Tetrahedron Lett. 1990, **31**, 307.
- 467. Degl'Innocenti, A.; Stucchi, E.; Capperucci, A.; Mordini, A.; Reginato, G.; Ricci, A. Synlett 1992, 332.
- 468. Naruse, Y.; Esaki, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 1417.

- 469. Naruse, Y.; Esaki, T.; Yamamoto, H. Tetrahedron 1988, 44, 4747.
- 470. Becicka, B. T.; Koerwitz, F. L.; Drtina, G. J.; Baenziger, N. C.; Wiemer,
 D. F. J. Org. Chem. 1990, 55, 5613.
- 471. Gothelf, K. V.; Torssell, K. G. Acta Chem. Scand. 1994, 48, 61.
- 472. Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1992, 33, 7705.
- 473. Crisp, G. T.; Glink, P. T. Tetrahedron 1994, 50, 2623.
- 474. Hettrick, C. M.; Scott, W. J. J. Am. Chem. Soc. 1991, **113**, 4903.
- 475. Ley, S. V.; Redgrave, A. J.; Taylor, S. C.; Ahmed, S.; Ribbons, D. W. Synlett 1991, 741.
- 476. Haiza, M.; Lee, J.; Snyder, J. K. J. Org. Chem. 1990, 55, 5008.
- 477. Bestmann, H. J.; Attygalle, A. B.; Schwarz, J.; Garbe, W.; Vostrowsky, O.; Tomida, I. Tetrahedron Lett. 1989, **30**, 2911.
- 478. McLaughlin, M. L.; McKinney, J. A.; Paquette, L. A. Tetrahedron Lett. 1986, **27**, 5595.
- 479. Paquette, L. A.; Moriarty, K. J.; McKinney, J. A.; Rogers, R. D. Organometallics 1989, 8, 1707.
- 480. Paquette, L. A.; Ra, C. S.; Edmonson, S. D. J. Org. Chem. 1990, **55**, 2443.
- 481. Paquette, L. A.; Shi, Y. J. J. Org. Chem. 1989, 54, 5205.
- 482. Paquette, L. A.; Shi, Y.-J. J. Am. Chem. Soc. 1990, 112, 8478.
- 483. Paquette, L. A.; Ross, R. J.; Shi, Y. J. J. Org. Chem. 1990, 55, 1589.
- 484. Lee, J.; Li, J.-H.; Oya, S.; Snyder, J. K. J. Org. Chem. 1992, 57, 5301.
- 485. Forsyth, C. J.; Clardy, J. J. Am. Chem. Soc. 1988, **110**, 5911.
- 486. Forsyth, C. J.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3497.
- 487. Cheney, D. L.; Paquette, L. A. J. Org. Chem. 1989, 54, 3334.
- 488. Paquette, L. A.; Sivik, M. R. Organometallics 1992, **11**, 3503.
- 489. Leanna, M. R.; Morton, H. E. Tetrahedron Lett. 1993, 34, 4485.
- 490. Papageorgiou, C.; Florineth, A.; Mikol, V. J. Med. Chem. 1994, 37, 3674.
- 491. Queneau, Y.; Krol, W. J.; Bornmann, W. G.; Danishefsky, S. J. J. Org. Chem. 1992, **57**, 4043.
- 492. Chan, C.; Cox, P. B.; Roberts, S. M. J. Chem. Soc., Chem. Commun. 1988, 971.
- 493. Desmaele, D.; d'Angelo, J. J. Org. Chem. 1994, **59**, 2292.
- 494. Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; La Greca, S.; Tsuri, T.; Yue, E. W.; Yang, Z. Angew. Chem., Int. Ed. Engl. 1994, **33**, 2187.
- 495. Johnson, C. R.; Adams, J. P.; Collins, M. A. J. Chem. Soc., Perkins Trans. 1 1993, 1.
- 496. Braisted, A. C.; Schultz, P. G. J. Am. Chem. Soc. 1994, **116**, 2211.
- 497. Tamura, R.; Kohno, M.; Utsunomiya, S.; Yamawaki, K.; Azuma, N.;

Matsumoto, A.; Ishii, Y. J. Org. Chem. 1993, 58, 3953.

- 498. Oh, J.; Cha, J. K. Synlett 1994, 967.
- 499. Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko, M. A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J. Org. Chem. 1994, **59**, 332.
- 500. Djuric, S. W.; Haack, R. A.; Yu, S. S. J. Chem. Soc., Perkin Trans. 1 1989, 2133.
- 501. Butera, J.; Bagli, J.; Doubleday, W.; Humber, L.; Treasurywala, A.; Loughney, D.; Sestanj, K.; Millen, J.; Sredy, J. J. Med. Chem. 1989, 32, 757.
- 502. Mascareñas, J. L.; Garcia, A. M.; Castedo, L.; Mouriño, A. Tetrahedron Lett. 1992, **33**, 7589.
- 503. Han, Q.; Wiemer, D. F. J. Am. Chem. Soc. 1992, 114, 7692.
- 504. Niwa, H.; leda, S.; Inagaki, H.; Yamada, K. Tetrahedron Lett. 1990, **31**, 7157.
- 505. Rudisill, D. E.; Castonguay, L. A.; Stille, J. K. Tetrahedron Lett. 1988, **29**, 1509.
- 506. Corey, E. J.; Houpis, I. N. J. Am. Chem. Soc. 1990, **112**, 8997.
- 507. Yokokawa, F.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1993, 34, 6559.
- 508. Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1993, 115, 7021.
- 509. Castedo, L.; Mouriño, A.; Sarandeses, L. A. Tetrahedron Lett. 1986, 27, 1523.
- 510. Takeyama, Y.; Ichinose, Y.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1989, **30**, 3159.
- 511. Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W. J.; Overman, L. E. J. Am. Chem. Soc. 1993, **115**, 3966.
- 512. Skoda-Földes, R.; Kollár, L.; Heil, B.; Gálik, G.; Tuba, Z.; Arcadi, A. Tetrahedron: Asymmetry. 1991, **2**, 633.
- 513. Schweder, B.; Uhlig, E.; Döring, M.; Kosemund, D. J. Prakt. Chem. 1993, **335**, 439.
- 514. Chu-Moyer, M. Y.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1994, **116**, 11213.
- 515. Tius, M. A.; Kannangara, G. S. K.; Kerr, M. A.; Grace, K. J. S. Tetrahedron 1993, **49**, 3291.
- 516. Corey, E. J.; Wu, L. I. J. Am. Chem. Soc. 1993, 115, 9327.
- 517. Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1990, **31**, 1889.
- 518. Degl'Innocenti, A.; Capperucci, A.; Bartoletti, L.; Mordini, A.; Reginato, G. Tetrahedron Lett. 1994, **35**, 2081.
- 519. Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1992, 114, 2260.
- 520. Tanaka, H.; Kameyama, Y.; Sumida, S.-i.; Shiroi, T.; Sasaoka, M.; Taniguchi, M.; Torii, S. Synlett 1992, 351.

- 521. Skoda-Földes, R.; Kollár, L.; Marinelli, F.; Arcadi, A. Steroids 1994, **59**, 691.
- 522. Trost, B. M.; Greenspan, P. D.; Geisser, H.; Kim, J. H.; Greeves, N. Angew. Chem., Int. Ed. Engl. 1994, **33**, 2182.
- 523. Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Mook, R. A., Jr.; Dorsey, G. F., Jr.; Hiner, R. N.; Cribbs, C. M.; Wheeler, T. N.; Ray, J. A.; Andrews, R. C.; Batchelor, K. W.; Bramson, H. N.; Stuart, J. D.; Schweiker, S. L.; van Arnold, J.; Croom, S.; Bickett, D. M.; Moss, M. L.; Tian, G.; Unwalla, R. J.; Lee, F. W.; Tippin, T. K.; James, M. K.; Grizzle, M. K.; Long, J. E.; Schuster, S. V. J. Med. Chem. 1994, **37**, 2352.
- 524. Congreve, M. S.; Holmes, A. B.; Looney, M. G. J. Am. Chem. Soc. 1993, **115**, 5815.
- 525. Hashimoto, S.-i.; Suzuki, A.; Shinoda, T.; Miyazaki, Y.; Ikegami, S. Chem. Lett. 1992, 1835.
- 526. Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857.
- 527. Piers, E.; Ellis, K. A. Tetrahedron Lett. 1993, 34, 1875.
- 528. Piers, E.; Brunet, M.-L.; Oballa, R. M. Can. J. Chem. 1993, 71, 1484.
- 529. Kosugi, M.; Naka, H.; Harada, S.; Sano, H.; Migita, T. Chem. Lett. 1987, 1371.
- 530. Sakamoto, T.; Kondo, Y.; Uchiyama, D.; Yamanaka, H. Tetrahedron 1991, **47**, 5111.
- 531. Kosugi, M.; Koshiba, M.; Atoh, A.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1986, **59**, 677.
- 532. Verlhac, J.-B.; Quintard, J.-P.; Pereyre, M. J. Chem. Soc., Chem. Commun. 1988, 503.
- 533. Galarini, R.; Musco, A.; Pontellini, R.; Santi, R. J. Mol. Catal. 1992, **72**, L11.
- 534. Quintard, J. P.; Dumartin, G.; Elissondo, B.; Rahm, A.; Pereyre, M. Tetrahedron 1989, **45**, 1017.
- 535. Liu, B.; Zhu, D.; Pan, H.; Zhang, A. Cuihua Xuebao 1994, **15**, 85; Chem. Abstr. 1994, **121**, 133462.
- 536. Iyoda, M.; Kuwatani, Y.; Ueno, N.; Oda, M. J. Chem. Soc., Chem. Commun. 1992, 158.
- 537. Kang, K.-T.; Kim, S. S.; Lee, J. C. Tetrahedron Lett. 1991, 32, 4341.
- 538. Kosugi, M.; Ishikawa, T.; Nogami, T.; Migita, T. Nippon Kagaku Kaishi 1985, 520; Chem. Abstr. 1985, **104**, 68496.
- 539. Parrain, J.-L.; Duchene, A.; Quintard, J.-P. Tetrahedron Lett. 1990, **31**, 1857.
- 540. Corriu, R. J. P.; Bolin, G.; Moreau, J. J. E. Tetrahedron Lett. 1991, **32**, 4121.

- 541. Donnelly, D. M. X.; Finet, J.-P.; Stenson, P. H. Heterocycles 1989, **28**, 15.
- 542. Uemura, M.; Nishimura, H.; Kamikawa, K.; Nakayama, K.; Hayashi, Y. Tetrahedron Lett. 1994, **35**, 1909.
- 543. Schreiber, S. L.; Porco, J. A., Jr. J. Org. Chem. 1989, 54, 4721.
- 544. Urabe, H.; Matsuka, T.; Sato, F. Tetrahedron Lett. 1992, 33, 4183.
- 545. Sakamoto, T.; Funami, N.; Kondo, Y.; Yamanaka, H. Heterocycles 1991, **32**, 1387.
- 546. Yang, Y.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1992, 656.
- 547. Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981, **215**, 49.
- 548. Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1976, **117**, C55.
- 549. Kosugi, M.; Kato, Y.; Kiuchi, K.; Migita, T. Chem. Lett. 1981, 69.
- 550. Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Synthesis 1987, 693.
- 551. Dondoni, A.; Fogagnolo, M.; Fantin, G.; Medici, A.; Pedrini, P. Tetrahedron Lett. 1986, **27**, 5269.
- 552. Sakamoto, T.; Shiga, F.; Yasuhara, A.; Uchiyama, D.; Kondo, Y.; Yamanaka, H. Synthesis 1992, 746.
- 553. Bumagin, N. A.; Bumagina, I. G.; Beletskaya, I. P. Dokl. Akad. Nauk SSSR 1984, **274**, 818; Chem. Abstr. 1984, **101**, 111062.
- 554. Liebeskind, L. S.; Riesinger, S. W. J. Org. Chem. 1993, 58, 408.
- 555. Bellina, F.; Carpita, A.; De Santis, M.; Rossi, R. Tetrahedron Lett. 1994, **35**, 6913.
- 556. Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron 1993, **49**, 3325.
- 557. Kashin, A. N.; Bumagina, I. G.; Bumagin, N. A.; Bakunin, V. N.; Beletskaya, I. P. J. Org. Chem. USSR 1981, **17**, 789; Chem. Abstr. 1981, **95**, 133056.
- 558. Somei, M.; Yamada, F.; Naka, K. Chem. Pharm. Bull. 1987, 35, 1322.
- 559. Weller, P. E.; Hanzlik, R. P. J. Labelled Compd. Radiopharm. 1988, 25, 991.
- 560. Takahashi, K.; Nihira, T. Bull. Chem. Soc. Jpn. 1992, 65, 1855.
- 561. Takahashi, K.; Nihira, T.; Akiyama, K.; Ikegami, Y.; Fukuyo, E. J. Chem. Soc., Chem. Commun. 1992, 620.
- 562. Beley, M.; Chodorowski, S.; Collin, J.-P.; Sauvage, J.-P. Tetrahedron Lett. 1993, **34**, 2933.
- 563. Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Heterocycles 1993, **36**, 2597.

- 564. Iwao, M.; Takehara, H.; Furukawa, S.; Watanabe, M. Heterocycles 1993, **36**, 1483.
- 565. Alvarez, A.; Guzman, A.; Ruiz, A.; Velarde, E.; Muchowski, J. M. J. Org. Chem. 1992, **57**, 1653.
- 566. Bumagin, N. A.; Gulevich, Y. V.; Artamkina, G. A.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1984, **33**, 1098; not in Chem. Abstr.
- 567. Wentland, M. P.; Lesher, G. Y.; Reuman, M.; Gruett, M. D.; Singh, B.; Aldous, S. C.; Dorff, P. H.; Rake, J. B.; Coughlin, S. A. J. Med. Chem. 1993, **36**, 2801.
- 568. Turner, W. R.; Suto, M. J. Tetrahedron Lett. 1993, 34, 281.
- 569. Gothelf, K. V.; Torssell, K. B. G. Acta Chem. Scand. 1994, 48, 165.
- 570. Gronowitz, S.; Timari, G. J. Heterocycl. Chem. 1990, 27, 1159.
- 571. Gronowitz, S.; Timari, G. J. Heterocycl. Chem. 1990, 27, 1127.
- 572. Walsh, T. F.; Fitch, K. J.; MacCoss, M.; Chang, R. S. L.; Kivlighn, S. D.; Lotti, V. J.; Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J. Bioorg. Med. Chem. Lett. 1994, 4, 219.
- 573. Kashin, A. N.; Bumagina, I. G.; Bumagin, N. A.; Bakunin, V. N.; Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 2185; Chem. Abstr. 1980, **94**, 30858.
- 574. Wang, S.; Yan, S.; Hu, X.; Guo, H. Huaxue Xuebao 1993, **51**, 393; Chem. Abstr. 1993, **119**, 139027.
- 575. Olszewski, J. D.; Marshalla, M.; Sabat, M.; Sundberg, R. J. J. Org. Chem. 1994, **59**, 4285.
- 576. Kashin, A. N.; Bumagina, I. G.; Bumagin, N. A.; Beletskaya, I. P.; Reutov, O. A. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 479; Chem. Abstr. 1980, **93**, 26019.
- 577. Nikanorov, V. A.; Rozenberg, V. I.; Kharitonov, V. G.; Yatsenko, E. V.; Mikul'shina, V. V.; Bumagin, N. A.; Beletskaya, I. P.; Guryshev, V. N.; Yur'ev, V. V.; Reutov, O. A. Metalloorg. Khim. 1991, 4, 689; Chem. Abstr. 1991, **115**, 92458.
- 578. Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. Lett. 1994, **4**, 2871.
- 579. Gothelf, K.; Thomsen, I. B.; Torssell, K. B. G. Acta Chem. Scand. 1992, **46**, 494.
- 580. Booth, C.; Imanieh, H.; Quayle, P.; Lu, S. Y. Tetrahedron Lett. 1992, **33**, 413.
- 581. Duchene, A.; Quintard, J.-P. Synth. Commun. 1985, 15, 873.
- 582. Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1993, 34, 2127.
- 583. Carpino, P. A.; Sneddon, S. F.; da Silva Jardine, P.; Magnus-Ayritey, G. T.; Rauch, A. L.; Burkard, M. R. Bioorg. Med. Chem. Lett. 1994, **4**, 93.

- 584. Rivero, R. A.; Kevin, N. J.; Allen, E. E. Bioorg. Med. Chem. Lett. 1993, **3**, 1119.
- 585. Ellingboe, J. W.; Antane, M.; Nguyen, T. T.; Collini, M. D.; Antane, S.; Bender, R.; Hartupee, D.; White, V.; McCallum, J.; Park, C. H.; Russo, A.; Osler, M. B.; Wojdan, A.; Dinsih, J.; Ho, D. M.; Bagli, J. F. J. Med. Chem. 1994, **37**, 542.
- 586. Perrier, H.; Prasit, P.; Wang, Z. Tetrahedron Lett. 1994, 35, 1501.
- 587. Cuevas, J.-C.; Patil, P.; Snieckus, V. Tetrahedron Lett. 1989, 30, 5841.
- 588. DuMartin, G.; Pereyre, M.; Quintard, J.-P. Tetrahedron Lett. 1987, **28**, 3935.
- 589. Cummins, C. H. Tetrahedron Lett. 1994, 35, 857.
- 590. Bumagin, N. A.; Ponomarev, A. B.; Beletskaya, I. P. J. Organomet. Chem. 1985, **291**, 129.
- 591. Rudisill, D. E.; Stille, J. K. J. Org. Chem. 1989, 54, 5856.
- 592. Kurth, M.; Pèlegrin, A.; Rose, K.; Offord, R. E.; Pochon, S.; Mach, J.-P.; Buchegger, F. J. Med. Chem. 1993, 36, 1255.
- 593. Arano, Y.; Wakisaka, K.; Ohmomo, Y.; Uezono, T.; Mukai, T.; Motonari, H.; Shiono, H.; Sakahara, H.; Konishi, J.; Tanaka, C.; Yokoyama, A. J. Med. Chem. 1994, **37**, 2609.
- 594. Müller, G.; Dürner, G.; Bats, J. W.; Göbel, M. W. Liebigs Ann. Chem. 1994, 1075.
- 595. Schreiber, S. L.; Desmaele, D.; Porco, J. A., Jr. Tetrahedron Lett. 1988, **29**, 6689.
- 596. Iwao, M.; Takehara, H.; Obata, S.; Watanabe, M. Heterocycles 1994, **38**, 1717.
- 597. Cooper, C. B.; McFarland, J. W.; Blair, K. T.; Fontaine, E. H.; Jones, C. S.; Muzzi, M. L. Bioorg. Med. Chem. Lett. 1994, **4**, 835.
- 598. Takle, A.; Kocienski, P. Tetrahedron Lett. 1989, 30, 1675.
- 599. Takeuchi, M.; Tuihiji, T.; Nishimura, J. J. Org. Chem. 1993, **58**, 7388.
- 600. Chang, L. L.; Ashton, W. T.; Flanagan, K. L.; Naylor, E. M.; Chakravarty, P. K.; Patchett, A. A.; Greenlee, W. J.; Bendesky, R. J.; Chen, T.-B.; Faust, K. A.; Kling, P. J.; Schaffer, L. W.; Schorn, T. W.; Zingaro, G. J.; Chang, R. S. L.; Lotti, V. J.; Kivlighn, S. D.; Siegl, P. K. S. Bioorg. Med. Chem. Lett. 1994, **4**, 115.
- 601. Negishi, E.-i.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, **31**, 4393.
- 602. Wentland, M. P.; Lesher, G. Y.; Reuman, M.; Pilling, G. M.; Saindane,
 M. T.; Perni, R. B.; Eissenstat, M. A.; Weaver, J. D., III; Singh, B.; Rake,
 J.; Coughlin, S. A. Bioorg. Med. Chem. Lett. 1993, 3, 1711.
- 603. Salituro, F. G.; Tomlinson, R. C.; Baron, B. M.; Palfreyman, M. G.;

McDonald, I. A. J. Med. Chem. 1994, 37, 334.

- 604. Hark, R. R.; Hauze, D. B.; Petrovskaia, O.; Joullie, M. M.; Jaouhari, R.; McComiskey, P. Tetrahedron Lett. 1994, **35**, 7719.
- 605. Stafford, J. A.; Valvano, N. L. J. Org. Chem. 1994, 59, 4346.
- 606. Kelly, T. R.; Bridger, G. J.; Zhao, C. J. Am. Chem. Soc. 1990, 112, 8024.
- 607. Smyth, M. S.; Stefanova, I.; Horak, I. D.; Burke, T. R., Jr. J. Med. Chem. 1993, 36, 3015.
- 608. Azzena, U.; Melloni, G.; Pisano, L. Tetrahedron Lett. 1993, 34, 5635.
- 609. John, C. S.; Saga, T.; Kinuya, S.; Le, N.; Jeong, J. M.; Paik, C. H.; Reba,
 R. C.; Varma, V. M.; McAfee, J. G. Nucl. Med. Biol. 1993, 20, 75.
- 610. Robl, J. A. Tetrahedron Lett. 1990, **31**, 3421.
- 611. Fu, J.-m.; Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1988, 29, 5459.
- 612. Sonesson, C.; Waters, N.; Svensson, K.; Carlsson, A.; Smith, M. W.; Piercey, M. F.; Meier, E.; Wikström, H. J. Med. Chem. 1993, **36**, 3188.
- 613. Rybakova, L. F.; Sorokina, R. S.; Petrov, E. S.; Val'kova, G. A.; Shifrina, R. R.; Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1985, 34, 1108; not in Chem. Abstr.
- 614. Mori, M.; Kaneta, N.; Shibasaki, M. J. Org. Chem. 1991, 56, 3486.
- 615. Bailey, T. R.; Diana, G. D.; Kowalczyk, P. J.; Akullian, V.; Eissenstat, M. A.; Cutcliffe, D.; Mallamo, J. P.; Carabateas, P. M.; Pevear, D. C. J. Med. Chem. 1992, **35**, 4628.
- 616. Zimmermann, E. K.; Stille, J. K. Macromolecules 1985, 18, 321.
- 617. Namavari, M.; Satyamurthy, N.; Phelps, M. E.; Barrio, J. R. Appl. Radiat. Isot. 1993, **44**, 527.
- 618. Matsumoto, T.; Hosoya, T.; Suzuki, K. Synlett 1991, 709.
- 619. Liu, Y.; Svensson, B. E.; Yu, H.; Cortizo, L.; Ross, S. B.; Lewander, T.; Hacksell, U. Bioorg. Med. Chem. Lett. 1991, **1**, 257.
- Liu, Y.; Yu, H.; Svensson, B. E.; Cortizo, L.; Lewander, T.; Hacksell, U. J. Med. Chem. 1993, 36, 4221.
- 621. de Paulis, T.; Smith, H. E. Synth. Commun. 1991, 21, 1091.
- 622. Tilley, J. W.; Clader, J. W.; Zawoiski, S.; Wirkus, M.; LeMahieu, R. A.; O'Donnell, M.; Crowley, H.; Welton, A. F. J. Med. Chem. 1989, **32**, 1814.
- 623. Hanefeld, W.; Jung, M. Liebigs Ann. Chem. 1994, 59.
- 624. Tilley, J. W.; Danho, W.; Lovey, K.; Wagner, R.; Swistok, J.; Makofske, R.; Michalewsky, J.; Triscari, J.; Nelson, D.; Weatherford, S. J. Med. Chem. 1991, **34**, 1125.
- 625. Kollár, L.; Skoda-Földes, R.; Mahó, S.; Tuba, Z. J. Organomet. Chem. 1993, **453**, 159.
- 626. Huang, F.-C.; Chan, W.-K.; Warus, J. D.; Morrissette, M. M.; Moriarty, K. J.; Chang, M. N.; Travis, J. J.; Mitchell, L. S.; Nuss, G. W.; Sutherland,

C. A. J. Med. Chem. 1992, 35, 4253.

- 627. Hanefeld, W.; Jung, M. Pharmazie 1994, 49, 18.
- 628. Hanefeld, W.; Jung, M. Tetrahedron 1994, 50, 2459.
- 629. Patel, H. K.; Kilburn, J. D.; Langley, G. J.; Edwards, P. D.; Mitchell, T.; Southgate, R. Tetrahedron Lett. 1994, **35**, 481.
- 630. Urones, J. G.; Marcos, I. S.; Basabe, P.; Garrido, N. M.; Jorge, A.; Moro, R. F.; Lithgow, A. M. Tetrahedron 1993, 49, 6079.
- 631. Blaszczak, L. C.; Halligan, N. G.; Seitz, D. E. J. Labelled Compd. Radiopharm. 1989, **27**, 401.
- Soll, R. M.; Kinney, W. A.; Primeau, J.; Garrick, L.; McCaully, R. J.; Colatsky, T.; Oshiro, G.; Park, C. H.; Hartupee, D.; White, V.; McCallum, J.; Russo, A.; Dinish, J.; Wojdan, A. Bioorg. Med. Chem. Lett. 1993, 3, 757.
- 633. Rychnovsky, S. D.; Hwang, K. J. Org. Chem. 1994, 59, 5414.
- 634. Holt, D. A.; Oh, H.-J.; Rozamus, L. W.; Yen, H.-K.; Brandt, M.; Levy, M. A.; Metcalf, B. W. Bioorg. Med. Chem. Lett. 1993, 3, 1735.
- 635. Zhuang, Z.-P.; Kung, M.-P.; Kung, H. F. J. Med. Chem. 1994, **37**, 1406.
- 636. Liljebris, C.; Resul, B.; Hacksell, U. Bioorg. Med. Chem. Lett. 1993, **3**, 241.
- 637. Rama Rao, A. V.; Gurjar, M. K.; Bhaskar Reddy, A.; Khare, V. B. Tetrahedron Lett. 1993, **34**, 1657.
- 638. Kelly, T. R.; Xu, W.; Ma, Z.; Li, Q.; Bhushan, V. J. Am. Chem. Soc. 1993, 115, 5843.
- 639. Saulnier, M. G.; LeBoulluec, K. L.; Vyas, D. M.; Crosswell, A. R.; Doyle, T. W. Bioorg. Med. Chem. Lett. 1992, 2, 1213.
- 640. Takeuchi, M.; Nishimura, J. Tetrahedron Lett. 1992, 33, 5563.
- 641. Rama Rao, A. V.; Gurjar, M. K.; Kaiwar, V.; Khare, V. B. Tetrahedron Lett. 1993, **34**, 1661.
- 642. Chan, K. S.; Chan, C. S. Synth. Commun. 1993, 23, 1489.
- 643. Rama Rao, A. V.; Laxma Reddy, K.; Srinivasa Rao, A. Tetrahedron Lett. 1994, **35**, 5047.
- 644. Liebeskind, L. S.; Zhang, J. J. Org. Chem. 1991, 56, 6379.
- 645. Grigg, R.; Teasdale, A.; Sridharan, V. Tetrahedron Lett. 1991, 32, 3859.
- 646. Kalivretenos, A.; Stille, J. K.; Hegedus, L. S. J. Org. Chem. 1991, **56**, 2883.
- 647. Kelly, T. R.; Li, Q.; Bhushan, V. Tetrahedron Lett. 1990, 31, 161.
- 648. Bradley, J. C.; Durst, T. J. Org. Chem. 1991, 56, 5459.
- 649. Magnus, P.; Witty, D.; Stamford, A. Tetrahedron Lett. 1993, 34, 23.
- 650. Finch, H.; Pegg, N. A.; Evans, B. Tetrahedron Lett. 1993, 34, 8353.

- 651. Sandosham, J.; Undheim, K. Acta Chem. Scand. 1989, 43, 684.
- 652. Djuric, S. W.; Huff, R. M.; Penning, T. D.; Clare, M.; Swenton, L.; Kachur, J. F.; Villani-Price, D.; Krivi, G. G.; Pyla, E. Y.; Warren, T. G. Bioorg. Med. Chem. Lett. 1992, 2, 1367.
- 653. Sasaki, S.; Takao, F.; Watanabe, K.; Obana, N.; Maeda, M.; Fukumura, T.; Takehara, S. Chem. Pharm. Bull. 1993, 41, 296.
- 654. Birkett, M. A.; Knight, D. W.; Mitchell, M. B. Synlett 1994, 253.
- 655. Engler, T. A.; Reddy, J. P.; Combrink, K. D.; Vander Velde, D. J. Org. Chem. 1990, **55**, 1248.
- 656. Engler, T. A.; Combrink, K. D.; Letavic, M. A.; Lynch, K. O., Jr.; Ray, J. E. J. Org. Chem. 1994, **59**, 6567.
- 657. Haraguchi, K.; Itoh, Y.; Tanaka, H.; Miyasaka, T. Tetrahedron Lett. 1991, **32**, 3391.
- 658. Haraguchi, K.; Itoh, Y.; Tanaka, H.; Akita, M.; Miyasaka, T. Tetrahedron 1993, **49**, 1371.
- 659. Martina, S.; Enkelmann, V.; Wegener, G.; Schlüter, A.-D. Synth. Metals 1992, **51**, 299.
- 660. Dupré, B.; Meyers, A. I. J. Org. Chem. 1991, 56, 3197.
- 661. Hegedus, L. S.; Holden, M. S. J. Org. Chem. 1986, 51, 1171.
- 662. Tidwell, J. H.; Peat, A. J.; Buchwald, S. L. J. Org. Chem. 1994, 59, 7164.
- 663. Vaillancourt, V.; Albizati, K. F. J. Am. Chem. Soc. 1993, **115**, 3499.
- 664. Yokoyama, Y.; Ikeda, M.; Saito, M.; Yoda, T.; Suzuki, H.; Murakami, Y. Heterocycles 1990, **31**, 1505.
- 665. Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, **112**, 3093.
- 666. Sheppard, G. S.; Pireh, D.; Carrera, G. M., Jr.; Bures, M. G.; Heyman, H. R.; Steinman, D. H.; Davidsen, S. K.; Phillips, J. G.; Guinn, D. E.; May, P. D.; Conway, R. G.; Rhein, D. A.; Calhoun, W. C.; Albert, D. H.; Magoc, T. J.; Carter, G. W.; Summers, J. B. J. Med. Chem. 1994, 37, 2011.
- 667. Gronowitz, S.; Peters, D. Heterocycles 1990, 30, 645.
- 668. Catellani, M.; Luzzati, S.; Musco, A.; Speroni, F. Synth. Metals 1994, **62**, 223.
- 669. Malm, J.; Björk, P.; Gronowitz, S.; Hörnfeldt, A.-B. Tetrahedron Lett. 1992, **33**, 2199.
- 670. Wigerinck, P.; Kerremans, L.; Claes, P.; Snoeck, R.; Maudgal, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1993, **36**, 538.
- 671. Kitimura, C.; Tanaka, S.; Yamashita, Y. J. Chem. Soc., Chem. Commun. 1994, 1585.
- 672. Nordvall, G.; Sundquist, S.; Nilvebrant, L.; Hacksell, U. Bioorg. Med.

Chem. Lett. 1994, 4, 2837.

- 673. Otsubo, T.; Kono, Y.; Hozo, N.; Miyamoto, H.; Aso, Y.; Ogura, F.; Tanaka, T.; Sawada, M. Bull. Chem. Soc. Jpn. 1993, **66**, 2033.
- 674. Bridges, A. J.; Lee, A.; Schwartz, C. E.; Towle, M. J.; Littlefield, B. A. Bioorg. Med. Chem. Lett. 1993, **1**, 403.
- 675. Kevin, N. J.; Rivero, R. A.; Greenlee, W. J.; Chang, R. S. L.; Chen, T. B. Bioorg. Med. Chem. Lett. 1994, 4, 189.
- 676. Sanfilippo, P. J.; McNally, J. J.; Press, J. B.; Fitzpatrick, L. J.; Urbanski, M. J.; Katz, L. B.; Giardino, E.; Falotico, R.; Salata, J.; Moore, J. B., Jr.; Miller, W. J. Med. Chem. 1992, **35**, 4425.
- 677. Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y. J. Am. Chem. Soc. 1992, **114**, 5867.
- 678. Barber, C.; Jarowicki, K.; Kocienski, P. Synlett 1991, 197.
- 679. Wattanasin, S. Synth. Commun. 1988, 18, 1919.
- 680. Koch, K.; Biggers, M. S. J. Org. Chem. 1994, 59, 1216.
- 681. Taka, N.; Koga, H.; Sato, H.; Ishizawa, T.; Takahashi, T.; Imagawa, J.-i. Bioorg. Med. Chem. Lett. 1994, **4**, 2893.
- 682. Takahashi, T.; Koga, H.; Sato, H.; Ishizawa, T.; Taka, N.; Imagawa, J.-i. Bioorg. Med. Chem. Lett. 1994, **4**, 2899.
- 683. Yoo, S.-e.; Suh, J. H.; Joeng, N. Bioorg. Med. Chem. Lett. 1992, 2, 381.
- 684. Al-Abed, Y.; Al-Tel, T. H.; Schröder, C.; Voelter, W. Angew. Chem., Int. Ed. Engl. 1994, 33, 1499.
- 685. Jarowicki, K.; Kocienski, P.; Marczak, S.; Willson, T. Tetrahedron Lett. 1990, **31**, 3433.
- 686. Morris, J.; Wishka, D. G.; Lin, A. H.; Humphrey, W. R.; Wiltse, A. L.; Gammill, R. B.; Judge, T. M.; Bisaha, S. N.; Olds, N. L.; Jacob, C. S.; Bergh, C. L.; Cudahy, M. M.; Williams, D. J.; Nishizawa, E. E.; Thomas, E. W.; Gorman, R. R.; Benjamin, C. W.; Shebuski, R. J. J. Med. Chem. 1993, **36**, 2026.
- 687. Kelly, T. R.; Kim, M. H. J. Org. Chem. 1992, 57, 1593.
- 688. Tius, M.; Gomez-Galeno, J.; Gu, X.-Q.; Zaidi, J. H. J. Am. Chem. Soc. 1991, **113**, 5775.
- 689. Macdonald, S. J. F.; McKenzie, T. C.; Hassen, W. D. J. Chem. Soc., Chem. Commun. 1987, 1528.
- 690. Paquette, L. A.; Wang, T.-Z.; Sivik, M. R. J. Am. Chem. Soc. 1994, **116**, 11323.
- 691. Paquette, L. A.; Wang, T.-Z.; Sivik, M. R. J. Am. Chem. Soc. 1994, **116**, 2665.
- 692. Bumagin, N. A.; Kalinovskii, I. O.; Beletskaya, I. P. Khim. Geterotsikl. Soedin. 1983, 1467; Chem. Abstr. 1983, **100**, 156465.

- 693. Godard, A.; Rovera, J.-C.; Marsais, F.; Plé, N.; Quéguiner, G. Tetrahedron 1992, **48**, 4123.
- 694. Malm, J.; Hörnfeldt, A. B.; Gronowitz, S. Heterocycles 1993, 35, 245.
- 695. Bumagin, N. A.; Andryukhova, N. P.; Beletskaya, I. P. Dokl. Akad. Nauk SSSR 1989, **307**, 375; Chem. Abstr. 1989, **112**, 138656.
- 696. Long, G. V.; Boyd, S. E.; Harding, M. M.; Buys, I. E.; Hambley, T. W. J. Chem. Soc., Dalton Trans. 1993, 3175.
- 697. Dehmlow, E. V.; Sleegers, A. Liebigs Ann. Chem. 1992, 953.
- 698. Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994, **116**, 3657.
- 699. Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.; Zilberstein, A. J. Med. Chem. 1994, 37, 2129.
- 700. Ghadiri, M. R.; Soares, C.; Choi, C. J. Am. Chem. Soc. 1992, **114**, 825.
- 701. Marsais, F.; Pineau, P.; Nivolliers, F.; Mallet, M.; Turck, A.; Godard, A.; Queguiner, G. J. Org. Chem. 1992, **57**, 565.
- 702. Odobel, F.; Sauvage, J.-P.; Harriman, A. Tetrahedron Lett. 1993, **34**, 8113.
- 703. Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, **116**, 5679.
- 704. Potts, K. T.; Konwar, D. J. Org. Chem. 1991, 56, 4815.
- 705. Bracher, F.; Hildebrand, D. Tetrahedron 1994, 50, 12329.
- 706. Bantick, J. R.; Beaton, H. G.; Cooper, S. L.; Hill, S.; Hirst, S. C.; McInally, T.; Spencer, J.; Tinker, A. C.; Willis, P. A. Bioorg. Med. Chem. Lett. 1994, 4, 121.
- 707. Zhang, H. C.; Daves, G. D., Jr. Organometallics 1993, 12, 1499.
- 708. Sandosham, J.; Undheim, K. Acta Chem. Scand. 1994, 48, 279.
- 709. Sandosham, J.; Undheim, K.; Rise, F. Heterocycles 1993, 35, 235.
- 710. Blough, B. E.; Mascarella, S. W.; Rothman, R. B.; Carroll, F. I. J. Chem. Soc., Chem. Commun. 1993, 758.
- 711. Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1988, **110**, 4051.
- 712. Godard, A.; Fourquez, J. M.; Tamion, R.; Marsais, F.; Quéguiner, G. Synlett 1994, **4**, 235.
- 713. Wentland, M. P.; Perni, R. B.; Dorff, P. H.; Brundage, R. P.; Castaldi, M. J.; Bailey, T. R.; Carabateas, P. M.; Bacon, E. R.; Young, D. C.; Woods, M. G.; Rosi, D.; Drozd, M. L.; Kullnig, R. K.; Dutko, F. J. J. Med. Chem. 1993, **36**, 1580.
- 714. VanAtten, M. K.; Ensinger, C. L.; Chiu, A. T.; McCall, D. E.; Nguyen, T. T.; Wexler, R. R.; Timmermans, P. B. M. W. M. J. Med. Chem. 1993, 36, 3985.
- 715. Farina, V.; Firestone, R. A. Tetrahedron 1993, **49**, 803.

- 716. Van Aken, K. J.; Lux, G. M.; Deroover, G. G.; Mererpoel, L.; Hoornaertt, G. J. Tetrahedron 1994, **50**, 5211.
- 717. Wigerinck, P.; Pannecouque, C.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1991, **34**, 2383.
- 718. Gutierrez, A. J.; Terhorst, T. J.; Matteucci, M. D.; Froehler, B. C. J. Am. Chem. Soc. 1994, **116**, 5540.
- 719. Chou, W.-N.; White, J. B. Tetrahedron Lett. 1991, 32, 157.
- 720. Wang, L. R. R.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1990, 44, 726.
- 721. Street, L. J.; Baker, R.; Book, T.; Reeve, A. J.; Saunders, J.; Willson, T.; Marwood, R. S.; Patel, S.; Freedman, S. B. J. Med. Chem. 1992, **35**, 295.
- 722. Van Aerschot, A. A.; Mamos, P.; Weyns, N. J.; Ikeda, S.; De Clercq, E.; Herdewijn, P. A. J. Med. Chem. 1993, 36, 2938.
- 723. Nair, V.; Purdy, D. F. Tetrahedron 1991, 47, 365.
- 724. Bell, A. S.; Fishwick, C. W. G.; Reed, J. E. Tetrahedron Lett. 1994, **35**, 6551.
- 725. Bracher, F.; Hildebrand, D. Liebigs Ann. Chem. 1992, 1315.
- 726. Bracher, F.; Hildebrand, D. Liebigs Ann. Chem. 1993, 837.
- 727. Newhouse, B. J.; Meyers, A. I.; Sirisoma, N. S.; Braun, M. P.; Johnson, C. R. Synlett 1993, 573.
- 728. Sjögren, M.; Hansson, S.; Norrby, P.-O.; Åkermark, B.; Cucciolito, M. E.; Vitagliano, A. Organometallics 1992, **11**, 3954.
- 729. Laborde, E.; Kiely, J.; Lesheski, L. E.; Schroeder, M. C. J. Heterocyclic Chem. 1991, **28**, 191.
- 730. Peña, M. R.; Stille, J. K. Tetrahedron Lett. 1987, 28, 6573.
- 731. Peters, D.; Hoernfeldt, A. B.; Gronowitz, S.; Johansson, N. G. J. Heterocycl. Chem. 1991, **28**, 529.
- 732. Verlinde, C. L. M. J.; Callens, M.; Van Calenbergh, S.; Van Aerschot, A.; Herdewijn, P.; Hannaert, V.; Michels, P. A. M.; Opperdoes, F. R.; Hol, W. G. J. J. Med. Chem. 1994, **37**, 3605.
- 733. Hedberg, M. H.; Johansson, A. M.; Hacksell, U. J. Chem. Soc., Chem. Commun. 1992, 845.
- 734. Hedberg, M. H.; Johansson, A. M.; Fowler, C. J.; Terenius, L.; Hacksell, U. Bioorg Med. Chem. Lett. 1994, **4**, 2527.
- 735. Harmata, M.; Barnes, C. L.; Karra, S. R.; Elahmad, S. J. Am. Chem. Soc. 1994, **116**, 8392.
- 736. Venkatesan, A. M.; Levin, J. I.; Baker, J. S.; Chan, P. S.; Bailey, T.; Couplet, J. Bioorg. Med. Chem. Lett. 1994, **4**, 183.
- 737. Davies, S. G.; Pyatt, D. Heterocycles 1989, 28, 163.

- 738. Levin, J. I.; Chan, P. S.; Couplet, J.; Thibault, L.; Venkatesan, A. M.; Bailey, T. K.; Vice, G.; Cobuzzi, A.; Lai, F.; Mellish, N. Bioorg. Med. Chem. Lett. 1994, 4, 1709.
- 739. Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1993, **115**, 10418.
- 740. Edstrom, E. D.; Wei, Y. J. Org. Chem. 1993, 58, 403.
- 741. Nair, V.; Buenger, G. S. Synthesis 1988, 848.
- 742. Farina, V.; Baker, S. R.; Sapino, C., Jr. Tetrahedron Lett. 1988, **29**, 6043.
- 743. Bateson, J. H.; Burton, G.; Elsmere, S. A.; Elliott, R. L. Synlett 1994, 152.
- 744. Roth, G. P.; Sapino, C. Tetrahedron Lett. 1991, 32, 4073.
- 745. Minnetian, O. M.; Morris, I. K.; Snow, K. M.; Smith, K. M. J. Org. Chem. 1989, **54**, 5567.
- 746. Herdewijn, P.; Kerremans, L.; Snoeck, R.; Van Aerschot, A.; Esmans, E.; De Clercq, E. Bioorg. Med. Chem. Lett. 1992, **2**, 1057.
- 747. Levin, J. I.; Chan, P. S.; Couplet, J.; Bailey, T. K.; Vice, G.; Thibault, L.; Lai, F.; Venkatesan, A. M.; Cobuzzi, A. Bioorg. Med. Chem. Lett. 1994, 4, 1703.
- 748. de Laszlo, S. E.; Allen, E. E.; Quagliato, C. S.; Greenlee, W. J.; Patchett, A. A.; Nachbar, R. B.; Siegl, P. K.; Chang, R. S.; Kivlighn, S. D.; Schorn, T. S.; Faust, K. A.; Chen, T.-B.; Zingaro, G. J.; Lotti, V. J. Bioorg. Med. Chem. Lett. 1993, 3, 1299.
- 749. Soderquist, J. A.; Leong, W. W.-H. Tetrahedron Lett. 1983, 24, 2361.
- 750. Bumagin, N. A.; Bumagina, I. G.; Kashin, A. N.; Beletskaya, I. P. J. Org. Chem. USSR 1982, 8, 977; Chem. Abstr. 1982, 97, 216343.
- 751. Kashin, A. N.; Bumagina, I. G.; Bumagin, N. A.; Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 1433; Chem. Abstr. 1981, **95**, 114976.
- 752. Ando, K.; Hatano, C.; Akadegawa, N.; Shigihara, A.; Takayama, H. J. Chem. Soc., Chem. Commun. 1992, 870.
- 753. Pérez, M.; Castaño, A. M.; Echavarren, A. M. J. Org. Chem. 1992, **57**, 5047.
- 754. Colson, P.-J.; Franck-Neumann, M.; Sedrati, M. Tetrahedron Lett. 1989, **30**, 2393.
- 755. Kashin, A. N.; Bumagin, N. A.; Kalinovskii, I. O.; Beletskaya, I. P.;
 Reutov, O. A. J. Org. Chem. USSR 1980, 16, 1329; Chem. Abstr. 1980, 94, 14747.
- 756. Sewald, N.; Gaa, K.; Burger, K. Heteroatom Chemistry 1993, 4, 253.
- 757. Lander, P. A.; Hegedus, L. S. J. Am. Chem. Soc. 1994, **116**, 8126.

- 758. Comins, D. L.; Mantlo, N. B. Tetrahedron Lett. 1987, 28, 759.
- 759. Mitchell, T. N.; Kwetkat, K. J. Organomet. Chem. 1992, 439, 127.
- 760. Barbry, D.; Couturier, D. J. Labelled Compd. Radiopharm. 1987, **24**, 603.
- 761. Ley, S. V.; Trudell, M. L.; Wadsworth, D. J. Tetrahedron 1991, 47, 8285.
- 762. Ley, S. V.; Wadsworth, D. J. Tetrahedron Lett. 1989, 30, 1001.
- 763. Parrain, J.-L.; Beaudet, I.; DuchAne, A.; Watrelot, S.; Quintard, J.-P. Tetrahedron Lett. 1993, **34**, 5445.
- 764. Huffman, J. W.; Potnis, S. M.; Satish, A. V. J. Org. Chem. 1985, **50**, 4266.
- 765. Norley, M. C.; Kocienski, P. J.; Faller, A. Synlett 1994, 77.
- 766. Bonnaffé, D.; Simon, H. Tetrahedron 1992, 48, 9695.
- 767. Ackroyd, J.; Karpf, M.; Dreiding, A. S. Helv. Chim. Acta 1985, 68, 338.
- 768. Brieden, W.; Ostwald, R.; Knochel, P. Angew, Chem., Int. Ed. Engl. 1993, **32**, 582.
- 769. Guibé, F.; Four, P.; Riviere, H. J. Chem. Soc., Chem. Commun. 1980, 432.
- 770. Baldwin, J. E.; Adlington, R. M.; Ramcharitar, S. H. Synlett 1992, 875.
- 771. Castaño, A. M.; Cuerva, J. M.; Echavarren, A. M. Tetrahedron Lett. 1994, **35**, 7435.
- 772. Eicher, T.; Massonne, K.; Herrmann, M. Synthesis 1991, 1173.
- 773. Ireland, R. E.; Obrecht, D. M. Helv. Chim. Acta 1986, 69, 1273.
- 774. Pellicciari, R.; Gallo-Mezo, M. A.; Natalini, B.; Amer, A. M. Tetrahedron Lett. 1992, **33**, 3003.
- 775. Salituro, F. G.; McDonald, I. A. J. Org. Chem. 1988, 53, 6138.
- 776. Ornstein, P. L.; Melikian, A.; Martinelli, M. J. Tetrahedron Lett. 1994, **35**, 5759.
- 777. Kende, A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, **104**, 5808.
- 778. Darwish, I. S.; Patel, C.; Miller, M. J. J. Org. Chem. 1993, 58, 6072.
- 779. Ho, T. L.; Gopalan, B.; Nestor, J. J., Jr. J. Org. Chem. 1986, **51**, 2405.
- 780. Darwish, I. S.; Miller, M. J. J. Org. Chem. 1994, 59, 451.
- 781. Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko, M. A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J. Org. Chem. 1994, **59**, 332.
- 782. Salvi, J.-P.; Walchshofer, N.; Paris, J. Tetrahedron Lett. 1994, 35, 1181.
- 783. Labadie, J. W.; Stille, J. K. Tetrahedron Lett. 1983, 24, 4283.
- 784. Mazur, P.; Nakanishi, K. J. Org. Chem. 1992, 57, 1047.
- 785. Wright, M. E.; Lowe-Ma, C. K. Organometallics 1990, 9, 347
- 786. Moore, J. S. Makromol. Chem., Rapid Commun. 1992, 13, 91.

- 787. Jousseaume, B.; Villeneuve, P. Tetrahedron 1989, 45, 1145.
- 788. Sakamoto, T.; Shiga, F.; Uchiyama, D.; Kondo, Y.; Yamanaka, H. Heterocycles 1992, **33**, 813.
- 789. Hibino, J.-i.; Matsubara, S.; Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1984, **25**, 2151.
- 790. Baxter, A. J. G.; Dixon, J.; Ince, F.; Manners, C. N.; Teague, S. J. J. Med. Chem. 1993, 36, 2739.
- 791. Hodgson, D. M.; Boulton, L. T.; Maw, G. N. Tetrahedron Lett. 1994, **35**, 2231.
- 792. Yu, K.-L.; Mansuri, M. M.; Starrett, J. E., Jr. Tetrahedron Lett. 1994, **35**, 8955.
- 793. Torok, D. S.; Scott, W. J. Tetrahedron Lett. 1993, 34, 3067.
- 794. Crisp, G. T.; O'Donoghue, A. I. Synth. Commun. 1989, **19**, 1745.
- 795. Kende, A. S.; Mendoza, J. S.; Fujii, Y. Tetrahedron 1993, 49, 8015.
- 796. Claesson, A.; Swahn, B. M.; Edvinsson, K. M.; Molin, H.; Sandberg, M. Bioorg. Med. Chem. Lett. 1992, 2, 1247.
- 797. Monclus, M.; Luxen, A. Org. Prep. Proced. Int. 1992, 24, 692.
- 798. Adlington, R. M.; Baldwin, J. E.; Gansaeuer, A.; McCoull, W.; Russell, A. T. J. Chem. Soc., Perkin Trans. 1 1994, 1697.
- 799. Miftakhov, M. S.; Lesnikova, E. T.; Tolstikov, G. A. J. Org. Chem. USSR 1986, 22, 2007; Chem. Abstr. 1986, 107, 115397.
- 800. Liebeskind, L. S.; Foster, B. S. J. Am. Chem. Soc. 1990, 112, 8612.
- 801. Guibé, F.; Zigna, A.-M.; Balavoine, G. J. Organomet. Chem. 1986, **306**, 257.
- 802. Echavarren, A. M.; Tueting, D. R.; Stille, J. K. J. Am. Chem. Soc. 1988, 110, 4039.
- 803. White, J. D.; Jensen, M. S. J. Am. Chem. Soc. 1993, **115**, 2970.
- 804. Guibé, F.; Xian, Y. T.; Balavoine, G. J. Organomet. Chem. 1986, **306**, 267.
- 805. Kosugi, M.; Miyajima, Y.; Nakanishi, H.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1989, 62, 3383.
- 806. Owton, W. M.; Brunavs, M. Synth. Commun. 1991, 21, 981.
- 807. Sheffy, F. K.; Stille, J. K. J. Am. Chem. Soc. 1983, **105**, 7173.
- 808. Yoshida, J.; Funahashi, H.; Iwasaki, H.; Kawabata, N. Tetrahedron Lett. 1986, **27**, 4469.
- 809. Kurosawa, H.; Kajimaru, H.; Miyoshi, M.-A.; Ohnishi, H.; Ikeda, I. J. Mol. Catal. 1992, **74**, 481.
- 810. Keinan, E.; Greenspoon, N. Tetrahedron Lett. 1982, 23, 241.
- 811. Sano, H.; Okawara, M.; Ueno, Y. Synthesis 1984, **11**, 933.

- 812. Keinan, E.; Bosch, E. J. Org. Chem. 1986, 51, 4006.
- 813. Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 773.
- 814. Katsumura, S.; Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1987, 28, 1191.
- 815. Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 773.
- 816. Nagano, N.; Itahana, H.; Hisamichi, H.; Sakamoto, K.; Hara, R. Tetrahedron Lett. 1994, 35, 4577.
- 817. Mori, K.; Koga, Y. Bioorg. Med. Chem. Lett. 1992, 2, 391.
- 818. Farina, V.; Baker, S. R.; Benigni, D.; Sapino, C., Jr. Tetrahedron Lett. 1988, **29**, 5739.
- 819. van Asselt, R.; Elsevier, C. J. Organometallics 1992, 11, 1999.
- 820. Kraus, G. A.; Ridgeway, J. J. Org. Chem. 1994, 59, 4735.
- 821. Paquette, L. A.; Rayner, C. M.; Doherty, A. M. J. Am. Chem. Soc. 1990, 112, 4078.
- 822. Astles, P. C.; Paquette, L. A. Synlett 1992, 444.
- 823. Paquette, L. A.; Astles, P. C. J. Org. Chem. 1993, 58, 165.
- 824. Trost, B. M.; Pietrusiewicz, K. M. Tetrahedron Lett. 1985, 26, 4039.
- 825. Lo Sterzo, C.; Stille, J. K. Organometallics 1990, 9, 687.
- 826. Saha, A. K.; Hossain, M. M. J. Organomet. Chem. 1993, 445, 137.
- 827. Uemura, M.; Nishimura, H.; Hayashi, T. J. Organomet. Chem. 1994, 473, 129.
- 828. Wright, M. E. J. Organomet. Chem. 1989, 376, 353.
- 829. Mitchell, T. N.; Kwetkat, K.; Rutschow, D.; Schneider, U. Tetrahedron 1989, **45**, 969.
- 830. Ingham, S. L.; Khan, M. S.; Lewis, J.; Long, N. J.; Raithby, P. R. J. Organomet, Chem. 1994, **470**, 153.
- 831. Jevnaker, N.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1993, **47**, 406.
- 832. Kosugi, M.; Koshiba, M.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1985, **58**, 1075.
- 833. Kosugi, M.; Ohya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1983, 56, 3539.
- 834. Kosugi, M.; Takano, I.; Sakurai, M.; Sano, H.; Migita, T. Chem. Lett. 1984, 1221.
- 835. Ito, Y.; Inouye, M.; Murakami, M. Tetrahedron Lett. 1988, 29, 5379.
- 836. Ito, Y.; Inouye, M.; Murakami, M. Chem. Lett. 1989, 1261.
- 837. Kuniyasu, H.; Ogawa, A.; Sonoda, N. Tetrahedron Lett. 1993, 34, 2491.
- 838. Shair, M. D.; Yoon, T.-y.; Danishefsky, S. J. Angew. Chem. Int. Ed. Engl. 1995, 34, 1721.
- 839. Johnson, C. R.; Golebiowski, A.; Braun, M. P.; Sundram, H. Tetrahedron Lett. 1994, **35**, 1833.

- 840. Shishido, K.; Goto, K.; Miyoshi, S.; Takaisi, Y.; Shibuya, M. J. Org. Chem. 1994, **59**, 406.
- 841. Tanaka, M. Synthesis 1981, 47.
- 842. Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1992, **40**, 1137.
- 843. Bumagin, N. A.; Bumagina, I. G.; Kashin, A. N.; Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 7, 1675; Chem. Abstr. 1981, 95, 114980.
- 844. Liebeskind, L. S.; Yu, M. S.; Fengl, R. W. J. Org. Chem. 1993, 58, 3543.
- 845. Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. Chem. Lett. 1982, 35.
- 846. Bates, R. W.; Gabel, C. J.; Ji, J. Tetrahedron Lett. 1994, **35**, 6993.
- 847. Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Kezar, I., Hollis S.; Carlson, R. K.; Park, C.-H.; Corless, P. F.; Miller, S. J.; Rajagopalan, P.; Wounola, M. A.; McRipley, R. J.; Eberly, V. S.; Slee, A. M.; Forbes, M. J. Med. Chem. 1990, **33**, 2569.
- 848. Hartman, G. D.; Halczenko, W. Synth. Commun. 1991, 21, 2103.
- 849. Crouch, G. J.; Eaton, B. E. Nucleosides & Nucleotides 1994, 13, 939.
- 850. Katsumura, S.; Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1988, **29**, 1173.
- 851. Bochmann, M.; Kelly, K. J. Chem. Soc., Chem. Commun. 1989, 532.
- 852. Bochmann, M.; Kelly, K.; Lu, J. J. Polym. Sci., Polym. Chem. 1992, **30A**, 2503.
- 852a. Bochmann, M.; Kelly, K. J. Polym. Sci., Polym. Chem. 1992, **30A**, 2511.
- 853. Marsella, M. J.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 12214.
- 854. Bao, Z.; Chan, W.; Yu, L. Chem. Mater. 1993, 5, 2; Chem. Abstr. 1993, 118, 192407.
- 855. Yu, L.; Bao, Z.; Cai, R. Angew. Chem., Int. Ed. Engl. 1993, 32, 1345.
- 856. Bochmann, M.; Lu, J. J. Polym. Sci.: Pt. A. Polym. Chem. 1994, **32**, 2493.
- 857. Chan, W.-K.; Chen, Y.; Peng, Z.; Yu, L. J. Am. Chem. Soc. 1993, **115**, 11735.
- 858. Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y. J. Am. Chem. Soc. 1992, **114**, 5867.
- 859. Kosugi, M.; Arai, H.; Yoshino, A.; Migita, T. Chem. Lett. 1978, 795.
- 860. Gronowitz, S.; Malm, J.; Hörnfeldt, A.-B. Collect. Czech. Chem. Commun. 1991, **56**, 2340.
- 861. Malm, J.; Rehn, B.; Hörnfeldt, A.-B.; Gronowitz, S. J. Heterocycl. Chem. 1994, **31**, 11.
- 862. Kosugi, M.; Ogata, T.; Tamura, H.; Sano, H.; Migita, T. Chem. Lett. 1986, 1197.

- 863. Larock, R. C.; Leach, D. R.; Bjorge, S. M. J. Org. Chem. 1986, **51**, 5221.
- 864. Malm, J.; Björk, P.; Gronowitz, S.; Hörnfeldt, A.-B. Tetrahedron Lett. 1994, **35**, 3195.
- 865. Takacs, J. M.; Chandramouli, S. Organometallics 1990, 9, 2877.